fiber上的updateQueue经过React的一番计算之后,这个fiber已经有了新的状态,也就是state,对于类组件来说,state是在render函数里被使用的,既然已经得到了新的state,那么当务之急是执行一次render,得到持有新state的ReactElement。
假设render一次之后得到了大量的ReactElement,而这些ReactElement之中若只有少量需要更新的节点,那么显然不能全部去更新它们,此时就需要有一个diff过程来决定哪些节点是真正需要更新的。
我们以类组件为例,state的计算发生在类组件对应的fiber节点beginWork中的updateClassInstance函数中,在状态计算完毕之后,紧跟着就是去调finishClassComponent执行diff、打上effectTag(即新版本的flag)。
打上effectTag可以标识这个fiber发生了怎样的变化,例如:新增(Placement)、更新(Update)、删除(Deletion),这些被打上flag的fiber会在complete阶段被收集起来,形成一个effectList链表,只包含这些需要操作的fiber,最后在commit阶段被更新掉。
function updateClassComponent(
current: Fiber | null, workInProgress: Fiber, Component: any, nextProps: any, renderLanes: Lanes,) {
...
// 计算状态
shouldUpdate = updateClassInstance(
current,
workInProgress,
Component,
nextProps,
renderLanes,
);
...
// 执行render,进入diff,为fiber打上effectTag
const nextUnitOfWork = finishClassComponent(
current,
workInProgress,
Component,
shouldUpdate,
hasContext,
renderLanes,
);
return nextUnitOfWork;
}
在finishClassComponent函数中,调用reconcileChildFibers去做diff,而reconcileChildFibers实际上就是ChildReconciler,这是diff的核心函数,
该函数针对组件render生成的新节点的类型,调用不同的函数进行处理。
function ChildReconciler(shouldTrackSideEffects) {
...
function reconcileSingleElement(
returnFiber: Fiber,
currentFirstChild: Fiber | null,
element: ReactElement,
lanes: Lanes,
): Fiber {
// 单节点diff
}
function reconcileChildrenArray(
returnFiber: Fiber,
currentFirstChild: Fiber | null,
newChildren: Array<*>,
lanes: Lanes,
): Fiber | null {
// 多节点diff
}
...
function reconcileChildFibers(
returnFiber: Fiber,
currentFirstChild: Fiber | null,
newChild: any, lanes: Lanes,
): Fiber | null {
const isObject = typeof newChild === 'object' && newChild !== null;
if (isObject) {
// 处理单节点
switch (newChild.$$typeof) {
case REACT_ELEMENT_TYPE:
return placeSingleChild(
reconcileSingleElement(
returnFiber,
currentFirstChild,
newChild,
lanes,
),
);
case REACT_PORTAL_TYPE:
...
case REACT_LAZY_TYPE:
...
}
}
if (typeof newChild === 'string' || typeof newChild === 'number') {
// 处理文本节点
}
if (isArray(newChild)) {
// 处理多节点
return reconcileChildrenArray(
returnFiber,
currentFirstChild,
newChild,
lanes,
);
}
...
}
return reconcileChildFibers;
}
关于Diff的参与者,在reconcileChildren函数的入参中可以看出
workInProgress.child = reconcileChildFibers(
workInProgress,
current.child,
nextChildren,
renderLanes,
);
可以看出,diff的两个主体是:oldFiber(current.child)和newChildren(nextChildren,新的ReactElement),它们是两个不一样的数据结构。
比如现在有组件<Example/>,它计算完新的状态之后,要基于这两个东西去做diff,分别是现有fiber树中(current树)<Example/>对应fiber的所有子fiber节点和<Example/>的render函数的执行结果,即那些ReactElements。
<Example/>对应fiber的所有子fiber节点:oldFiber
current树中
<Example/> fiber | | A --sibling---> B --sibling---> C
<Example/>的render函数的执行结果,newChildren
current fiber 对应的组件render的结果
[
{$$typeof: Symbol(react.element), type: "div", key: "A" },
{$$typeof: Symbol(react.element), type: "div", key: "B" },
{$$typeof: Symbol(react.element), type: "div", key: "B" },
]
对于新旧两种结构来说,场景有节点自身更新、节点增删、节点移动三种情况。面对复杂的情况,即使最前沿的算法,复杂度也极高。面对这种情况,React以如下策略应对:
旧
<div>
<span>a</span>
<span>b</span>
</div>
新
<p>
<span>a</span>
<span>b</span>
</p>
旧
<p key="a">aa</p>
<h1 key="b">bb</h1>
新
<h1 key="b">bb</h1>
<p key="a">aa</p>
因为tag 和 key的存在,所以React可以知道这两个节点只是位置发生了变化。
上面说到diff算法应对三种场景:节点更新、节点增删、节点移动,但一个fiber的子元素有可能是单节点,也有可能是多节点。所以依据这两类节点可以再细分为:
什么是节点的更新呢?对于dom节点来说,在前后的节点类型(tag)和key都相同的情况下,节点的属性发生了变化,是节点更新。若前后的节点tag或者key不相同,Diff算法会认为新节点和旧节点毫无关系。
以下例子中,key为b的新节点的className发生了变化,是节点更新。
旧
<div className={'a'} key={'a'}>aa</div>
<div className={'b'} key={'b'}>bb</div>
新
<div className={'a'} key={'a'}>aa</div>
<div className={'bcd'} key={'b'}>bb</div>
以下例子中,新节点的className虽然有变化,但key也变化了,不属于节点更新
旧
<div className={'a'} key={'a'}>aa</div>
<div className={'b'} key={'b'}>bb</div>
新
<div className={'a'} key={'a'}>aa</div>
<div className={'bcd'} key={'bbb'}>bb</div>
以下例子中,新节点的className虽然有变化,但tag也变化了,不属于节点更新
旧
<div className={'a'} key={'a'}>aa</div>
<div className={'b'} key={'b'}>bb</div>
新
<div className={'a'} key={'a'}>aa</div>
<p className={'bcd'} key={'b'}>bb</p>
下面来分开叙述一下单节点和多节点它们各自的更新策略。
若组件产出的元素是如下的类型:
<div key="a">aa</div>
那么它最终产出的ReactElement为下面这样(省略了一些与diff相关度不大的属性)
{
$$typeof: Symbol(react.element), type: "div", key: "a"
...
}
单节点指newChildren为单一节点,但是oldFiber的数量不一定,所以实际有如下三种场景:
为了降低理解成本,我们用简化的节点模型来说明问题,字母代表key。
旧: A
新: A
旧: A - B - C
新: B
旧: --
新: A
对于单节点的diff,其实就只有更新操作,不会涉及位移和位置的变化,单节点的更新会调用reconcileSingleElement函数处理。该函数中对以上三种场景都做了覆盖。但实际上面的情况对于React来说只是两种,oldFiber链是否为空。因此,在实现上也只处理了这两种情况。
遍历它们,找到key相同的节点,然后删除剩下的oldFiber节点,再用匹配的oldFiber,newChildren中新节点的props来生成新的fiber节点。
function reconcileSingleElement(
returnFiber: Fiber,
currentFirstChild: Fiber | null,
element: ReactElement,
lanes: Lanes
): Fiber {
const key = element.key;
let child = currentFirstChild;
while (child !== null) {
if (child.key === key) {
switch (child.tag) {
case Fragment:
...
case Block:
...
default: {
if (child.elementType === element.type) {
// 先删除剩下的oldFiber节点
deleteRemainingChildren(returnFiber, child.sibling);
// 基于oldFiber节点和新节点的props新建新的fiber节点
const existing = useFiber(child, element.props);
existing.ref = coerceRef(returnFiber, child, element);
existing.return = returnFiber; return existing;
}
break;
}
}
deleteRemainingChildren(returnFiber, child);
break;
} else {
// 没匹配到说明新的fiber节点无法从oldFiber节点新建
// 删除掉所有oldFiber节点
deleteChild(returnFiber, child);
}
child = child.sibling;
}
...
}
对于没有oldFiber节点的情况,只能新建newFiber节点。逻辑不复杂。
function reconcileSingleElement(
returnFiber: Fiber,
currentFirstChild: Fiber | null,
element: ReactElement,
lanes: Lanes
): Fiber {
const key = element.key;
let child = currentFirstChild;
while (child !== null) {
// oldFiber链非空的处理
...
} if (element.type === REACT_FRAGMENT_TYPE) {
// 处理Fragment类型的节点
...
} else {
// 用产生的ReactElement新建一个fiber节点
const created = createFiberFromElement(element, returnFiber.mode, lanes);
created.ref = coerceRef(returnFiber, currentFirstChild, element);
created.return = returnFiber;
return created;
}
}
单节点的更新就是这样的处理,真正比较复杂的情况是多节点的diff。因为它涉及到节点的增删和位移。
若组件最终产出的DOM元素是如下这样:
<div key="a">aa</div>
<div key="b">bb</div>
<div key="c">cc</div>
<div key="d">dd</div>
那么最终的newChildren为下面这样(省略了一些与diff相关度不大的属性)
[
{$$typeof: Symbol(react.element), type: "div", key: "a" },
{$$typeof: Symbol(react.element), type: "div", key: "b" },
{$$typeof: Symbol(react.element), type: "div", key: "c" },
{$$typeof: Symbol(react.element), type: "div", key: "d" }
]
多节点的变化有以下四种可能性。
旧: A - B - C
新: `A - B - C`
旧: A - B - C
新: A - B - C - `D - E`
旧: A - B - C - `D - E`
新: A - B - C
旧: A - B - C - D - E
新: A - B - `D - C - E`
多节点的情况一定是属于这四种情况的任意组合,这种情况会调用reconcileChildrenArray进行diff。按照以上四种情况,它会以newChildren为主体进行最多三轮遍历,但这三轮遍历并不是相互独立的,事实上只有第一轮是从头开始的,之后的每一轮都是上轮结束的断点继续。实际上在平时的实践中,节点自身的更新是最多的,所以Diff算法会优先处理更新的节点。因此四轮遍历又可以按照场景分为两部分:
第一轮是针对节点自身属性更新,剩下的两轮依次处理节点的新增、移动,而重点又在移动节点的处理上,所以本文会着重讲解节点更新和节点移动的处理,对删除和新增简单带过。
第一轮从头开始遍历newChildren,会逐个与oldFiber链中的节点进行比较,判断节点的key或者tag是否有变化。
let newIdx = 0;
for (; oldFiber !== null && newIdx < newChildren.length; newIdx++) {
...
// 更新节点,对于DOM节点来说,updateSlot内部会判断
// key 和 tag。任意一个不同,则返回null
const newFiber = updateSlot( returnFiber,
oldFiber,
newChildren[newIdx],
lanes,
);
// newFiber为null则说明当前的节点不是更新的场景,中止这一轮循环
if (newFiber === null) {
if (oldFiber === null) {
oldFiber = nextOldFiber;
}
break;
}
...
}
我们来看一个例子,假设新旧的节点如下:
旧: A - B - C - D - E
新: A - B - D - C
在本轮遍历中,会遍历A - B - D - C。A和B都是key没变的节点,可以直接复用,但当遍历到D时,发现key变化了,跳出当前遍历。例子中A 和 B是自身发生更新的节点,后面的D 和 C我们看到它的位置相对于oldFiber链发生了变化,会往下走到处理移动节点的循环中。
关于移动节点的参照物
为了方便说明,把保留在原位的节点称为固定节点。经过这次循环的处理,可以看出固定节点是A 和 B。在newChildren中,最靠右的固定节点的位置至关重要,对于后续的移动节点的处理来说,它的意义是提供参考位置。所以,每当处理到最后一个固定节点时,要记住此时它的位置,这个位置就是lastPlacedIndex。关键代码如下:
let newIdx = 0;
for (; oldFiber !== null && newIdx < newChildren.length; newIdx++) {
...
// 跳出逻辑
...
// 如果不跳出,记录最新的固定节点的位置
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);
...}
placeChild方法实际上是移动节点的方法,但当节点无需移动的时候,会返回当前节点的位置,对于固定节点来说,因为无需移动,所以返回的就是固定节点的index。
我们没有提到对删除节点的处理,实际上删除节点比较简单。
旧: A - B - C - D - E
新: A - B - C
因为遍历的是newChildren,当它遍历结束,但oldFiber链还没有遍历完,那么说明剩下的节点都要被删除。直接在oldFiber节点上标记Deletion的effectTag来实现删除。
if (newIdx === newChildren.length) {
// 新子节点遍历完,说明剩下的oldFiber都是没用的了,可以删除
deleteRemainingChildren(returnFiber, oldFiber);
return resultingFirstChild;
}
deleteRemainingChildren调用了deleteChild,值得注意的是,删除不仅仅是标记了effectTag为Deletion,还会将这个被删除的fiber节点添加到父级的effectList中。
function deleteChild(returnFiber: Fiber, childToDelete: Fiber): void {
...
const last = returnFiber.lastEffect;
// 将要删除的child添加到父级fiber的effectList中,并添加上effectTag为删除
if (last !== null) {
last.nextEffect = childToDelete;
returnFiber.lastEffect = childToDelete;
} else {
returnFiber.firstEffect = returnFiber.lastEffect = childToDelete;
}
childToDelete.nextEffect = null;
childToDelete.effectTag = Deletion;
}
新增节点的场景也很好理解,当oldFiber链遍历完,但newChildren还没遍历完,那么余下的节点都属于新插入的节点,会新建fiber节点并以sibling为指针连成fiber链。
旧: A - B - C
新: A - B - C - D - E
插入的逻辑(省略了相关度不高的代码)
if (oldFiber === null) {
// 旧的遍历完了,意味着剩下的都是新增的了
for (; newIdx < newChildren.length; newIdx++) { // 首先创建newFiber
const newFiber = createChild(returnFiber, newChildren[newIdx], lanes);
...
// 再将newFiber连接成以sibling为指针的单向链表
if (previousNewFiber === null) {
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
}
return resultingFirstChild;
}
节点的移动是如下场景:
旧 A - B - C - D - E - F
新 A - B - D - C - E
经过第一轮遍历的处理,固定节点为A B,最新的固定节点的位置(lastPlacedIndex)为1(B的位置)。此时oldFiber链中还剩C - D - E - F,newChildren中还剩D - C - E。
接下来的逻辑对于位置不一样的节点,它自己会先更新再移动。因为此时剩余的节点位置变了,更新又要复用oldFiber节点,所以为了在更新时方便查找,会将剩余的oldFiber节点放入一个以key为键,值为oldFiber节点的map中。称为existingChildren。
由于newChildren 和 oldFiber节点都没遍历完,说明需要移动位置。此刻需要明确一点,就是这些节点都在最新的固定节点的右边。
移动的逻辑是:newChildren中剩余的节点,都是不确定要不要移动的,遍历它们,每一个都去看看这个节点在oldFiber链中的位置(旧位置),遍历到的节点有它在newChildren中的位置(新位置):
如果旧位置在lastPlacedIndex的右边,说明这个节点位置不变。
原因是旧位置在lastPlacedIndex的右边,而新节点的位置也在它的右边,所以它的位置没变化。因为位置不变,所以它成了固定节点,把lastPlacedIndex更新成新位置。
如果旧位置在lastPlacedIndex的左边,当前这个节点的位置要往右挪。
原因是旧位置在lastPlacedIndex的左边,新位置却在lastPlacedIndex的右边,所以它要往右挪,但它不是固定节点。此时无需更新lastPlacedIndex。
我们来用上边的例子过一下这部分逻辑。
旧 A - B - C - D - E - F
新 A - B - D - C - E
位置固定部分 A - B,最右侧的固定节点为B,lastPlacedIndex为1。这时剩余oldFiber链为C - D - E - F,existingChildren为
{
C: '节点C',
D: '节点D',
E: '节点E',
F: '节点F'
}
newChildren的剩余部分D - C - E继续遍历。
首先遍历到D,D在oldFiber链中(A - B - C - D - E)的位置为3
3 > 1,oldFiber中D的位置在B的右边,newChildren中也是如此,所以D的位置不动,此时最新的固定节点变成了D,更新lastPlacedIndex为3。并从existingChildren中删除D,
{
C: '节点C',
E: '节点E',
F: '节点F'
}
再遍历到C,C在oldFiber链中(A - B - C - D - E)的索引为2
2 < 3,C原来在最新固定节点(D)的左边,newChildren中C在D的右边,所以要给它移动到右边。并从existingChildren中删除C。
{
E: '节点E',
F: '节点F'
}
再遍历到E,E在oldFiber链中(A - B - C - D - E)的位置为4
4 > 3,oldFiber链中E位置在D的位置的右边,新位置中也是如此,所以E的位置不动,此时最新的固定节点变成了E,更新lastPlacedIndex为4。并从existingChildren中删除E,
{
F: '节点F'
}
这个时候newChildren都处理完了,针对移动节点的遍历结束。此时还剩一个F节点,是在oldFiber链中的,因为newChildren都处理完了,所以将它删除即可。
existingChildren.forEach(child => deleteChild(returnFiber, child));
可以看到,节点的移动是以最右侧的固定节点位置作为参照的。这些固定节点是指位置未发生变化的节点。每次对比节点是否需要移动之后,及时更新固定节点非常重要。
了解了上边的多节点diff原理后,将上边的关键点匹配到源码上更方便能进一步理解。下面放出带有详细注释的源码。
function reconcileChildrenArray(
returnFiber: Fiber,
currentFirstChild: Fiber | null,
newChildren: Array<*>,
lanes: Lanes,
): Fiber | null {
/* * returnFiber:currentFirstChild的父级fiber节点
* currentFirstChild:当前执行更新任务的WIP(fiber)节点
* newChildren:组件的render方法渲染出的新的ReactElement节点
* lanes:优先级相关
* */
// resultingFirstChild是diff之后的新fiber链表的第一个fiber。
let resultingFirstChild: Fiber | null = null;
// resultingFirstChild是新链表的第一个fiber。
// previousNewFiber用来将后续的新fiber接到第一个fiber之后
let previousNewFiber: Fiber | null = null;
// oldFiber节点,新的child节点会和它进行比较
let oldFiber = currentFirstChild;
// 存储固定节点的位置
let lastPlacedIndex = 0;
// 存储遍历到的新节点的索引
let newIdx = 0;
// 记录目前遍历到的oldFiber的下一个节点
let nextOldFiber = null;
// 该轮遍历来处理节点更新,依据节点是否可复用来决定是否中断遍历
for (; oldFiber !== null && newIdx < newChildren.length; newIdx++) {
// newChildren遍历完了,oldFiber链没有遍历完,此时需要中断遍历
if (oldFiber.index > newIdx) {
nextOldFiber = oldFiber; oldFiber = null;
} else {
// 用nextOldFiber存储当前遍历到的oldFiber的下一个节点
nextOldFiber = oldFiber.sibling;
}
// 生成新的节点,判断key与tag是否相同就在updateSlot中
// 对DOM类型的元素来说,key 和 tag都相同才会复用oldFiber
// 并返回出去,否则返回null
const newFiber = updateSlot(
returnFiber,
oldFiber,
newChildren[newIdx],
lanes,
);
// newFiber为 null说明 key 或 tag 不同,节点不可复用,中断遍历
if (newFiber === null) {
if (oldFiber === null) {
// oldFiber 为null说明oldFiber此时也遍历完了
// 是以下场景,D为新增节点
// 旧 A - B - C
// 新 A - B - C - D oldFiber = nextOldFiber;
}
break;
}
if (shouldTrackSideEffects) {
// shouldTrackSideEffects 为true表示是更新过程
if (oldFiber && newFiber.alternate === null) {
// newFiber.alternate 等同于 oldFiber.alternate
// oldFiber为WIP节点,它的alternate 就是 current节点
// oldFiber存在,并且经过更新后的新fiber节点它还没有current节点,
// 说明更新后展现在屏幕上不会有current节点,而更新后WIP
// 节点会称为current节点,所以需要删除已有的WIP节点
deleteChild(returnFiber, oldFiber);
}
}
// 记录固定节点的位置
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);
// 将新fiber连接成以sibling为指针的单向链表
if (previousNewFiber === null) {
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
// 将oldFiber节点指向下一个,与newChildren的遍历同步移动
oldFiber = nextOldFiber;
}
// 处理节点删除。新子节点遍历完,说明剩下的oldFiber都是没用的了,可以删除.
if (newIdx === newChildren.length) {
// newChildren遍历结束,删除掉oldFiber链中的剩下的节点
deleteRemainingChildren(returnFiber, oldFiber);
return resultingFirstChild;
}
// 处理新增节点。旧的遍历完了,能复用的都复用了,所以意味着新的都是新插入的了
if (oldFiber === null) {
for (; newIdx < newChildren.length; newIdx++) {
// 基于新生成的ReactElement创建新的Fiber节点
const newFiber = createChild(returnFiber, newChildren[newIdx], lanes);
if (newFiber === null) {
continue;
}
// 记录固定节点的位置lastPlacedIndex
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);
// 将新生成的fiber节点连接成以sibling为指针的单向链表
if (previousNewFiber === null) {
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
}
return resultingFirstChild;
}
// 执行到这是都没遍历完的情况,把剩余的旧子节点放入一个以key为键,值为oldFiber节点的map中
// 这样在基于oldFiber节点新建新的fiber节点时,可以通过key快速地找出oldFiber
const existingChildren = mapRemainingChildren(returnFiber, oldFiber);
// 节点移动
for (; newIdx < newChildren.length; newIdx++) {
// 基于map中的oldFiber节点来创建新fiber
const newFiber = updateFromMap( existingChildren, returnFiber, newIdx, newChildren[newIdx], lanes, );
if (newFiber !== null) {
if (shouldTrackSideEffects) {
if (newFiber.alternate !== null) {
// 因为newChildren中剩余的节点有可能和oldFiber节点一样,只是位置换了,
// 但也有可能是是新增的.
// 如果newFiber的alternate不为空,则说明newFiber不是新增的。
// 也就说明着它是基于map中的oldFiber节点新建的,意味着oldFiber已经被使用了,所以需
// 要从map中删去oldFiber
existingChildren.delete(
newFiber.key === null ? newIdx : newFiber.key,
);
}
}
// 移动节点,多节点diff的核心,这里真正会实现节点的移动
lastPlacedIndex = placeChild(newFiber, lastPlacedIndex, newIdx);
// 将新fiber连接成以sibling为指针的单向链表
if (previousNewFiber === null) {
resultingFirstChild = newFiber;
} else {
previousNewFiber.sibling = newFiber;
}
previousNewFiber = newFiber;
}
}
if (shouldTrackSideEffects) {
// 此时newChildren遍历完了,该移动的都移动了,那么删除剩下的oldFiber
existingChildren.forEach(child => deleteChild(returnFiber, child));
}
return resultingFirstChild;
}
Diff算法通过key和tag来对节点进行取舍,可直接将复杂的比对拦截掉,然后降级成节点的移动和增删这样比较简单的操作。对oldFiber和新的ReactElement节点的比对,将会生成新的fiber节点,同时标记上effectTag,这些fiber会被连到workInProgress树中,作为新的WIP节点。树的结构因此被一点点地确定,而新的workInProgress节点也基本定型。这意味着,在diff过后,workInProgress节点的beginWork节点就完成了。接下来会进入completeWork阶段。
原文来自:https://segmentfault.com/a/1190000039021724
React 是 facebook 出的一个前端框架. 设计的关键处就是性能问题。在本文中,我主要是介绍 Diff 算法以及 React 渲染 ,这样你可以更好的优化你的应用程序。
如果不了解virtual dom,要理解diff的过程是比较困难的。虚拟dom对应的是真实dom, 使用document.CreateElement 和 document.CreateTextNode创建的就是真实节点。vue2.0才开始使用了virtual dom,有向react靠拢的意思。
关于react的虚拟dom以及每次渲染更新的dom diff,网上文章很多。但是我一直信奉一个原则,即:但凡复杂的知识,理解之后都只需要记忆简单的东西,而想简单、精确描述一个复杂知识,是极困难的事。
传统diff计算两颗树形结构差异并进行转换,传统diff算法是这样做的:循环递归每一个节点;传统diff算法复杂度达到O(n^3 )这意味着1000个节点就要进行数10亿次的比较,这是非常消耗性能的
Virtual DOM 是一种编程理念。UI 信息被特定语言描述并保存到内存中,再通过特定的库,例如 ReactDOM 与真实的 DOM 同步信息。这一过程成为 协调 (Reconciliation)。上述只是 协调算法
为什么在Vue3.0都已经出来这么久了我还要写这篇文章,因为目前自己还在阅读Vue2.x的源码,感觉有所悟。作为一个刚毕业的新人,对Vue框架的整体设计和架构突然有了一点认知,所以才没头没尾地突然写下了diff算法。
Vue 源码中虚拟 DOM 与 Diff 算法的实现借鉴了 snabbdom 这个库,snabbdom 是一个虚拟 DOM 库,它专注于简单,模块化,强大的功能和性能。要彻底明白虚拟 DOM 与 Diff 算法就得分析 snabbdom 这个库到底做了什么?
所谓虚拟DOM就是用js对象来描述真实DOM,它相对于原生DOM更加轻量,因为真正的DOM对象附带有非常多的属性,另外配合虚拟DOM的diff算法,能以最少的操作来更新DOM,除此之外
那么需要真实的操作DOM100w次,触发了回流100w次。每次DOM的更新都会按照流程进行无差别的真实dom的更新。所以造成了很大的性能浪费。如果循环里面是复杂的操作,频繁触发回流与重绘
目前前端使用最多的就是 vue 或 react 了,我们在学习这两个框架的过程中,总有一个绕不开的话题:vnode,也就是虚拟 dom。什么是虚拟 DOM,引用一段 vue 官方的解释就是:
内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!