摩尔定律是由英特尔联合创始人戈登·摩尔(Gordon Moore)在 1965 年提出的,即集成电路上可容纳的元器件的数量每隔 18 至 24 个月就会增加一倍,性能也将提升一倍。也就是说,处理器(CPU)的性能每隔大约两年就会翻一倍。
距离摩尔定律被提出到现在,已经过去了 50 多年。如今,随着芯片组件的规模越来越接近单个原子的规模,要跟上摩尔定律的步伐变得越来越困难。
在 2019 年,英伟达 CEO 黄仁勋在 ECS 展会上说:“摩尔定律过去是每 5 年增长 10 倍,每 10 年增长 100 倍。而如今,摩尔定律每年只能增长几个百分点,每 10 年可能只有 2 倍。因此,摩尔定律结束了。”
单个处理器(CPU)的性能越来越接近瓶颈,想要突破这个瓶颈,则需要充分利用 多线程技术,让单个或多个 CPU 可以同时执行多个线程,更快的完成计算机任务。
我们都知道,Javascript 是单线程语言,Nodejs 利用 Javascript 的特性,使用事件驱动模型,实现了异步 I/O,而异步 I/O 的背后就是多线程调度,非常适合用来处理 I/O 密集型任务。
Node 异步 I/O 的实现可以参考朴灵的 《深入浅出 Node.js》
在 Go 语言中,可以通过创建 Goroutine 来显式调用一条新线程,并且通过环境变量 GOMAXPROCS 来控制最大并发数。
在 Node 中,可以使用 worker_threads 创建新的 Worker 来衍生新的工作线程。工作线程对于执行 CPU 密集型的 JavaScript 操作非常有用。它们在 I/O 密集型的工作中用途不大。 Node.js 的内置的异步 I/O 操作比工作线程效率更高。Node 本身实现了一些异步 I/O 的 api,例如 fs.readFile、http.request。这些异步 I/O 底层是调用了新线程执行异步任务,再利用事件驱动的模式来获取执行结果。
服务端开发、工具开发可能都会需要处理 I/O 密集型任务。比如处理复杂的爬虫任务,处理并发请求,进行文件处理等等...
在我们使用多线程来处理 I/O 密集型任务时,一定要控制最大同时并发数。因为不控制最大并发数,可能会导致 文件描述符 耗尽引发的错误,带宽不足引发的网络错误、端口限制引发的错误等等。
在 Node 中并没有用于控制最大并发数的 API 或者环境变量,所以接下来,我们就用几行简单的代码来实现。
我们先假设下面的一个需求场景,我有一个爬虫,需要每天爬取 100 篇掘金的文章,如果一篇一篇爬取的话太慢,一次爬取 100 篇会因为网络连接数太多,导致很多请求直接失败。
那我们可以来实现一下,每次请求 10 篇,分 10 次完成。这样不仅可以把效率提升 10 倍,并且可以稳定运行。
下面来看看单个请求任务,代码实现如下:
const axios = require("axios");
async function singleRequest(article_id) {
// 这里我们直接使用 axios 库进行请求
const reply = await axios.post(
"https://api.juejin.cn/content_api/v1/article/detail",
{
article_id,
}
);
return reply.data;
}
为了方便演示,这里我们 100 次请求的都是同一个地址,我们来创建 100 个请求任务,代码实现如下:
// 请求任务列表
const requestFnList = new Array(100)
.fill("6909002738705629198")
.map((id) => () => singleRequest(id));
接下来,我们来实现并发请求的方法。这个方法支持同时执行多个异步任务,并且可以限制最大并发数。在任务池的一个任务执行完成后,新的异步任务会被推入继续执行,以保证任务池的高利用率。代码实现如下:
const chalk = require("chalk");
const { log } = require("console");
/**
* 执行多个异步任务
* @param {*} fnList 任务列表
* @param {*} max 最大并发数限制
* @param {*} taskName 任务名称
*/
async function concurrentRun(fnList = [], max = 5, taskName = "未命名") {
if (!fnList.length) return;
log(chalk.blue(`开始执行多个异步任务,最大并发数: ${max}`));
const replyList = []; // 收集任务执行结果
const count = fnList.length; // 总任务数量
const startTime = new Date().getTime(); // 记录任务执行开始时间
let current = 0;
// 任务执行程序
const schedule = async (index) => {
return new Promise(async (resolve) => {
const fn = fnList[index];
if (!fn) return resolve();
// 执行当前异步任务
const reply = await fn();
replyList[index] = reply;
log(`${taskName} 事务进度 ${((++current / count) * 100).toFixed(2)}% `);
// 执行完当前任务后,继续执行任务池的剩余任务
await schedule(index + max);
resolve();
});
};
// 任务池执行程序
const scheduleList = new Array(max)
.fill(0)
.map((_, index) => schedule(index));
// 使用 Promise.all 批量执行
const r = await Promise.all(scheduleList);
const cost = (new Date().getTime() - startTime) / 1000;
log(chalk.green(`执行完成,最大并发数: ${max},耗时:${cost}s`));
return replyList;
}
从上面的代码可以看出,使用 Node 进行并发请求的关键就是 Promise.all,Promise.all 可以同时执行多个异步任务。
在上面的代码中,创建了一个长度为 max 最大并发数长度的数组,数组里放了对应数量的异步任务。然后使用 Promise.all 同时执行这些异步任务,当单个异步任务执行完成时,会在任务池取出一个新的异步任务继续执行,完成了效率最大化。
接下来,我们用下面这段代码进行执行测试(代码实现如下)
(async () => {
const requestFnList = new Array(100)
.fill("6909002738705629198")
.map((id) => () => singleRequest(id));
const reply = await concurrentRun(requestFnList, 10, "请求掘金文章");
})();
最终执行结果如下图所示:
到这里,我们的并发请求就完成啦!接下来我们分别来测试一下不同并发的速度吧~ 首先是 1 个并发,也就是没有并发(如下图)
耗时 11.462 秒!当不使用并发时,任务耗时非常长,接下来我们看看在其他并发数的情况下耗时(如下图)
从上图可以看出,随着我们并发数的提高,任务执行速度越来越快!这就是高并发的优势,可以在某些情况下提升数倍乃至数十倍的效率!
我们仔细看看上面的耗时会发现,随着并发数的增加,耗时还是会有一个阈值,不能完全呈倍数增加。这是因为 Node 实际上并没有为每一个任务开一个线程进行处理,而只是为异步 I/O 任务开启了新的线程。所以,这个方案比较适合处理 I/O 密集型任务,如果是 CPU(计算)密集型任务则需要考虑使用 worker_threads 来处理。
到这里,我们的使用 Node 处理 I/O 密集型任务就介绍完了。如果想要程序完善一点的话,还需要考虑到任务超时时间、容错机制,大家感兴趣的可以自己实现一下。
来自:https://github.com/a1029563229/Blogs/tree/master/BestPractices/node/concurrent
关于 Node.js 里 ES6 Modules 的一次更新说明,总结来说:CommonJS 与 ES6 Modules 之间的关键不同在于代码什么时候知道一个模块的结构和使用它。
在这个教程中,我们会开发一个命令行应用,它可以接收一个 CSV 格式的用户信息文件,教程的内容大纲:“Hello,World”,处理命令行参数,运行时的用户输入,异步网络会话,美化控制台的输出,封装成 shell 命令,JavaScript 之外
首先你需要生成https证书,可以去付费的网站购买或者找一些免费的网站,可能会是key或者crt或者pem结尾的。不同格式之间可以通过OpenSSL转换
nodej项目在微信环境开发,nodejs的异步特效,会导致请求没有完成就执行下面的代码,出现错误。经过多方查找,可以使用async模块来异步转同步,只有前一个function执行callback,下一个才会执行。
3G的大文件分1500个2M二进度文件,通post方法发送给node服务,服务器全部接收到文件后,进组装生成你上文件。
JavaScript比C的开发门槛要低,尽管服务器端JavaScript存在已经很多年了,但是后端部分一直没有市场,JavaScript在浏览器中有广泛的事件驱动方面的应用,考虑到高性能、符合事件驱动、没有历史包袱这3个主要原因,JavaScript成为了Node的实现语言。
node.js的第一个基本论点是I / O的性能消耗是很昂贵。因此,使用当前编程技术的最大浪费来自于等待I / O完成。有几种方法可以处理性能影响
在前后端分离的开发中,通过 Restful API 进行数据交互时,如果没有对 API 进行保护,那么别人就可以很容易地获取并调用这些 API 进行操作。那么服务器端要如何进行鉴权呢?
我们经常跟Node.js打交道,即使你是一名前端开发人员 -- npm脚本,webpack配置,gulp任务,程序打包 或 运行测试等。即使你真的不需要深入理解这些任务,但有时候你会感到困惑,会因为缺少Node.js的一些核心概念而以非常奇怪的方式来编码。
运行在 Node.js 之上的 Webpack 是单线程模型的,也就是说 Webpack 需要处理的任务需要一件件挨着做,不能多个事情一起做。happypack把任务分解给多个子进程去并发的执行,子进程处理完后再把结果发送给主进程。
内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!