快速排序的基本思想是选择数组中的一个元素作为关键字,通过一趟排序,把待排序的数组分成两个部分,其中左边的部分比所有关键字小,右边的部分比所有关键字大。然后再分别对左右两边的数据作此重复操作,直到所有元素都有序,就得到了一个完全有序的数组。
来看一个例子,以数组[4, 5, 2, 7, 3, 1, 6, 8]为例,我们选中数组最左边的元素为关键字pivot
第一步从右侧开始,往左移动右指针,遇到8,6,都比4大,直到遇到1,比4小,故把1移动到最左边。右指针保持不动,开始移动左指针。
移动左指针,发现5比关键字pivot 4大,所以把5移动到刚才记录的右指针的位置,相当于把比pivot大的值都移动到右侧。然后开始移动右指针。
移动右指针,发现3比pivot小,故把3移动到刚才左指针记录的位置,开始移动左指针。
移动左指针,2比pivot小,再移动,发现7,7比pivot大,故把7放到右指针记录的位置,再次开始移动右指针。
移动右指针,发现两个指针重叠了,将pivot的值插入指针位置(相当于找到了pivot在排序完成后所在的确切位置)。此次排序结束。
一趟排序结束后,将重叠的指针位置记录下来,分别对左右两侧的子数组继续上面的操作,直到分割成单个元素的数组。所有操作完成之后,整个数组也就变成有序数组了。
动态图如下,动态图使用20个元素的无序数组来演示。其中灰色背景为当前正在排序的子数组,橙色为当前pivot,为方便演示,使用交换元素的方式体现指针位置。
代码如下:
const quickSort = (array)=>{
quick(array, 0, array.length - 1)
}
const quick = (array, left, right)=>{
if(left < right){
let index = getIndex(array, left, right);
quick(array, left, index-1)
quick(array, index+1, right)
}
}
const getIndex = (array, leftPoint, rightPoint)=>{
let pivot = array[leftPoint];
while(leftPoint < rightPoint){
while(leftPoint < rightPoint && array[rightPoint] >= pivot) {
rightPoint--;
}
array[leftPoint] = array[rightPoint]
// swap(array, leftPoint, rightPoint) //使用swap,则与动态图演示效果完全一致
while(leftPoint < rightPoint && array[leftPoint] <= pivot) {
leftPoint++;
}
array[rightPoint] = array[leftPoint]
// swap(array, leftPoint, rightPoint)
}
array[leftPoint] = pivot
return leftPoint;
}
const swap = (array, index1, index2)=>{
var aux = array[index1];
array.splice(index1, 1, array[index2])
array.splice(index2, 1, aux)
}
const createNonSortedArray = (size)=>{
var array = new Array();
for (var i = size; i > 0; i--) {
//array.push(parseInt(Math.random()*100));
array.push(i*(100/size));
array.sort(function() {
return (0.5-Math.random());
});
}
return array;
}
var arr = createNonSortedArray(20);
quickSort(arr)
console.log(arr) //[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]
快速排序很明显用了分治的思想,关键在于选择的pivot,如果每次都能把数据平分成两半,这样递归树的深度就是logN,这样快排的时间复杂度为O(NlogN)。
而如果每次pivot把数组分成一部分空,一部分为所有数据,那么这时递归树的深度就是n-1,这样时间复杂度就变成了O(N^2)。
根据以上的时间复杂度分析,我们发现如果一个数据完全有序,那么使用咱们上面的快速排序算法就是最差的情况,所以怎么选择pivot就成了优化快速排序的重点了,如果继续使用上面的算法,那么我们可以随机选择pivot来代替数组首元素作为pivot的方式。
来自:https://www.cnblogs.com/EaVango/archive/2021/05/14/14769230.html
有一个数组,我们需要通过js对数组的元素进行随机排序,然后输出,这其实就是洗牌算法,首页需要从元素中随机取一个和第一元进行交换,然后依次类推,直到最后一个元素。
程序员必须知道的10大算法:快速排序算法、堆排序算法、归并排序、二分查找算法、BFPRT(线性查找算法)、DFS(深度优先搜索)、BFS(广度优先搜索)、Dijkstra算法、动态规划算法、朴素贝叶斯分类算法
使用原生js将一维数组中,包含连续的数字分成一个二维数组,这篇文章分2种情况介绍如何实现?1、过滤单个数字;2、包含单个数字。
给定一个无序的整数序列, 找最长的连续数字序列。例如:给定[100, 4, 200, 1, 3, 2],最长的连续数字序列是[1, 2, 3, 4]。此方法不会改变传入的数组,会返回一个包含最大序列的新数组。
racking.js 是一个独立的JavaScript库,实现多人同时检测人脸并将区域限定范围内的人脸标识出来,并保存为图片格式,跟踪的数据既可以是颜色,也可以是人,也就是说我们可以通过检测到某特定颜色,或者检测一个人体/脸的出现与移动,来触发JavaScript 事件。
JS常见算法题目:xiaoshuo-ss-sfff-fe 变为驼峰xiaoshuoSsSfffFe、数组去重、统计字符串中出现最多的字母、字符串反序、深拷贝、合并多个有序数组、约瑟夫环问题
这篇文章主要是针对一种最常见的非对称加密算法——RSA算法进行讲解。其实也就是对私钥和公钥产生的一种方式进行描述,RSA算法的核心就是欧拉定理,根据它我们才能得到私钥,从而保证整个通信的安全。
PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由 根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry Page)之姓来命名。
什么是回文字符串?即字符串从前往后读和从后往前读字符顺序是一致的。例如:字符串aba,从前往后读是a-b-a;从后往前读也是a-b-a
将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 ;当尾数为0时候需要进行舍去。解法:转字符串 再转数组进行操作,看到有人用四则运算+遍历反转整数。
内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!