Js乱序

更新日期: 2022-02-12 阅读: 1.6k 标签: 算法

乱序的意思就是将数组打乱。嗯,没有了,直接看代码吧。


Math.random

一个经常会遇见的写法是使用 Math.random():

var values = [1, 2, 3, 4, 5];

values.sort(function(){
    return Math.random() - 0.5;
});

console.log(values)

Math.random() - 0.5 随机得到一个正数、负数或是 0,如果是正数则降序排列,如果是负数则升序排列,如果是 0 就不变,然后不断的升序或者降序,最终得到一个乱序的数组。

看似很美好的一个方案,实际上,效果却不尽如人意。不信我们写个 demo 测试一下:

var times = [0, 0, 0, 0, 0];
for (var i = 0; i < 100000; i++) {
    let arr = [1, 2, 3, 4, 5];
    arr.sort(() => Math.random() - 0.5);
    times[arr[4]-1]++;
}
console.log(times)

测试原理是:将 [1, 2, 3, 4, 5] 乱序 10 万次,计算乱序后的数组的最后一个元素是 1、2、3、4、5 的次数分别是多少。

一次随机的结果为:

[30636, 30906, 20456, 11743, 6259]

该结果表示 10 万次中,数组乱序后的最后一个元素是 1 的情况共有 30636 次,是 2 的情况共有 30906 次,其他依此类推。

我们会发现,最后一个元素为 5 的次数远远低于为 1 的次数,所以这个方案是有问题的。

可是我明明感觉这个方法还不错呐?初见时还有点惊艳的感觉,为什么会有问题呢?

是的!我很好奇!


插入排序

如果要追究这个问题所在,就必须了解 sort 函数的原理,然而 ECMAScript 只规定了效果,没有规定实现的方式,所以不同浏览器实现的方式还不一样。

为了解决这个问题,我们以 v8 为例,v8 在处理 sort 方法时,当目标数组长度小于 10 时,使用插入排序;反之,使用快速排序和插入排序的混合排序。

所以我们来看看 v8 的源码,因为是用 JavaScript 写的,大家也是可以看懂的。

源码地址:https://github.com/v8/v8/blob/master/src/js/array.js

为了简化篇幅,我们对 [1, 2, 3] 这个数组进行分析,数组长度为 3,此时采用的是插入排序。

插入排序的源码是:

function InsertionSort(a, from, to) {
    for (var i = from + 1; i < to; i++) {
        var element = a[i];
        for (var j = i - 1; j >= from; j--) {
            var tmp = a[j];
            var order = comparefn(tmp, element);
            if (order > 0) {
                a[j + 1] = tmp;
            } else {
                break;
            }
        }
        a[j + 1] = element;
    }
};

其原理在于将第一个元素视为有序序列,遍历数组,将之后的元素依次插入这个构建的有序序列中。

我们来个简单的示意图:



具体分析

明白了插入排序的原理,我们来具体分析下 [1, 2, 3] 这个数组乱序的结果。

演示代码为:

var values = [1, 2, 3];

values.sort(function(){
    return Math.random() - 0.5;
});

注意此时 sort 函数底层是使用插入排序实现,InsertionSort 函数的 from 的值为 0,to 的值为 3。

我们开始逐步分析乱序的过程:

因为插入排序视第一个元素为有序的,所以数组的外层循环从 i = 1 开始,a[i] 值为 2,此时内层循环遍历,比较 compare(1, 2),因为 Math.random() - 0.5 的结果有 50% 的概率小于 0 ,有 50% 的概率大于 0,所以有 50% 的概率数组变成 [2, 1, 3],50% 的结果不变,数组依然为 [1, 2, 3]。

假设依然是 [1, 2, 3],我们再进行一次分析,接着遍历,i = 2,a[i] 的值为 3,此时内层循环遍历,比较 compare(2, 3):

有 50% 的概率数组不变,依然是 [1, 2, 3],然后遍历结束。

有 50% 的概率变成 [1, 3, 2],因为还没有找到 3 正确的位置,所以还会进行遍历,所以在这 50% 的概率中又会进行一次比较,compare(1, 3),有 50% 的概率不变,数组为 [1, 3, 2],此时遍历结束,有 50% 的概率发生变化,数组变成 [3, 1, 2]。

综上,在 [1, 2, 3] 中,有 50% 的概率会变成 [1, 2, 3],有 25% 的概率会变成 [1, 3, 2],有 25% 的概率会变成 [3, 1, 2]。

另外一种情况 [2, 1, 3] 与之分析类似,我们将最终的结果汇总成一个表格:

数组i = 1i = 2总计
[1, 2, 3]50% [1, 2, 3]50% [1, 2, 3]25% [1, 2, 3]
25% [1, 3, 2]12.5% [1, 3, 2]
25% [3, 1, 2]12.5% [3, 1, 2]
50% [2, 1, 3]50% [2, 1, 3]25% [2, 1, 3]
25% [2, 3, 1]12.5% [2, 3, 1]
25% [3, 2, 1]12.5% [3, 2, 1]

为了验证这个推算是否准确,我们写个 demo 测试一下:

var times = 100000;
var res = {};

for (var i = 0; i < times; i++) {
    
    var arr = [1, 2, 3];
    arr.sort(() => Math.random() - 0.5);
    
    var key = JSON.stringify(arr);
    res[key] ? res[key]++ :  res[key] = 1;
}

// 为了方便展示,转换成百分比
for (var key in res) {
    res[key] = res[key] / times * 100 + '%'
}

console.log(res)

这是一次随机的结果:


我们会发现,乱序后,3 还在原位置(即 [1, 2, 3] 和 [2, 1, 3]) 的概率有 50% 呢。

所以根本原因在于什么呢?其实就在于在插入排序的算法中,当待排序元素跟有序元素进行比较时,一旦确定了位置,就不会再跟位置前面的有序元素进行比较,所以就乱序的不彻底。

那么如何实现真正的乱序呢?而这就要提到经典的 Fisher–Yates 算法。


Fisher–Yates

为什么叫 Fisher–Yates 呢? 因为这个算法是由 Ronald Fisher 和 Frank Yates 首次提出的。

话不多说,我们直接看 JavaScript 的实现:

function shuffle(a) {
    var j, x, i;
    for (i = a.length; i; i--) {
        j = Math.floor(Math.random() * i);
        x = a[i - 1];
        a[i - 1] = a[j];
        a[j] = x;
    }
    return a;
}

原理很简单,就是遍历数组元素,然后将当前元素与以后随机位置的元素进行交换,从代码中也可以看出,这样乱序的就会更加彻底。

如果利用 ES6,代码还可以简化成:

function shuffle(a) {
    for (let i = a.length; i; i--) {
        let j = Math.floor(Math.random() * i);
        [a[i - 1], a[j]] = [a[j], a[i - 1]];
    }
    return a;
}

还是再写个 demo 测试一下吧:

var times = 100000;
var res = {};

for (var i = 0; i < times; i++) {
    var arr = shuffle([1, 2, 3]);

    var key = JSON.stringify(arr);
    res[key] ? res[key]++ :  res[key] = 1;
}

// 为了方便展示,转换成百分比
for (var key in res) {
    res[key] = res[key] / times * 100 + '%'
}

console.log(res)

这是一次随机的结果:


真正的实现了乱序的效果!

原文来自:https://github.com/mqyqingfeng/Blog/issues/51


本文内容仅供个人学习、研究或参考使用,不构成任何形式的决策建议、专业指导或法律依据。未经授权,禁止任何单位或个人以商业售卖、虚假宣传、侵权传播等非学习研究目的使用本文内容。如需分享或转载,请保留原文来源信息,不得篡改、删减内容或侵犯相关权益。感谢您的理解与支持!

链接: https://fly63.com/article/detial/11143

相关推荐

JavaScript字符串压缩_js实现字符串压缩

设计一种方法,通过给重复字符计数来进行基本的字符串压缩。例如,字符串 aabcccccaaa 可压缩为 a2b1c5a3 。而如果压缩后的字符数不小于原始的字符数,则返回原始的字符串。 可以假设字符串仅包括a-z的字母

js实现将一个正整数分解质因数

js 把一个正整数分解成若干个质数因子的过程称为分解质因数,在计算机方面,我们可以用一个哈希表来存储这个结果。首先,你需要一个判断是否为质数的方法,然后,利用短除法来分解。

js之反转整数算法

将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 ;当尾数为0时候需要进行舍去。解法:转字符串 再转数组进行操作,看到有人用四则运算+遍历反转整数。

js求数组中的最大差值的方法总汇

有一个无序整型数组,如何求出这个数组中最大差值。(例如:无序数组1, 3, 63, 44最大差值是 63-1=62)。实现原理:遍历一次数组,找到最大值和最小值,返回差值

js实现生成任意长度的随机字符串

js生成任意长度的随机字符串,包含:数字,字母,特殊字符。实现原理:可以手动指定字符库及随机字符长度,利用Math.round()和Math.random()两个方法实现获取随机字符

js生成32位uuid算法总汇_js 如何生成uuid?

GUID是一种由算法生成的二进制长度为128位的数字标识符。GUID 的格式为“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”,其中的 x 是 0-9 或 a-f 范围内的一个32位十六进制数。在理想情况下,任何计算机和计算机集群都不会生成两个相同的GUID。

js从数组取出 连续的 数字_实现一维数组中连续数字分成几个连续的数字数组

使用原生js将一维数组中,包含连续的数字分成一个二维数组,这篇文章分2种情况介绍如何实现?1、过滤单个数字;2、包含单个数字。

Tracking.js_ js人脸识别前端代码/算法框架

racking.js 是一个独立的JavaScript库,实现多人同时检测人脸并将区域限定范围内的人脸标识出来,并保存为图片格式,跟踪的数据既可以是颜色,也可以是人,也就是说我们可以通过检测到某特定颜色,或者检测一个人体/脸的出现与移动,来触发JavaScript 事件。

js实现统计一个字符串中出现最多的字母的方法总汇

给出一个字符串,统计出现次数最多的字母。方法一为 String.prototype.charAt:先遍历字符串中所有字母,统计字母以及对应显示的次数,最后是进行比较获取次数最大的字母。方法二 String.prototype.split:逻辑和方法一相同,只不过是通过 split 直接把字符串先拆成数组。

js实现斐波那契数列的几种方式

斐波那契指的是这样一个数列:1、1、2、3、5、8、13、21、34......在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*);随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!