Js扑克牌速算24 - 穷举

更新日期: 2022-03-11 阅读: 1.6k 标签: 算法

从扑克牌里面任意抽取4张(无重复)A(1)2345678910J(11)Q(12)K(13),请给出通过4则运算,使结果为24的算法,并且每个数在算式中使用一次。如果无法通过上述规则得到24,则输出“无法计算得到24”。

如果给出4个数为2 3 4 5,程序的输出结果应是一个表达式:(5+3-2)*4

要求:提交算法思路即可。


思路:

先分析一下穷举包含多少种情况:

1、操作数。由于是给定的4张牌,所以把这个4张牌进行全排列,共有:24种
2、运算符。4个数之间有3个运算符,每个运算符有4种选择,共有:64种
3、运算符优先级。共有:5种

统计上面的情况,应该总共有:24645=7680种

即如果用a、b、c、d代表这四个数,&代表某一种运算符,优先级依然用括号表示,那么只需要分别考虑以下这些形式:

 1、(a & b) & (c & d)
 2、((a & b) & c) & d
 3、(a & (b & c)) & d
 4、a & (b & (c & d))
 5、a & ((b & c) & d)


解题代码

const get24 = (str) => {
let arr = str.split(' ')
let transfer = (v) => {
switch (v) {
case 'A':
return 1
case 'J':
return 11
case 'Q':
return 12
case 'K':
return 13
default:
return Number(v)
}
}
//1.转换成真实数字
let nums = []
for (let i = 0; i < arr.length; i++) {
nums[i] = transfer(arr[i])
}
//2.全排列-穷举不重复的排列-回溯
let ans = [];
let used = Array(nums.length).fill(false)
let backTracing = (start, path) => {
if (start === nums.length) {
ans.push(path.slice())
return
}
for (let i = 0; i < nums.length; ++i) {
if (used[i] || (i > 0 && nums[i] === nums[i - 1] && !used[i - 1])) {
continue;
}
path.push(nums[i])
used[i] = true
backTracing(start + 1, path)
used[i] = false
path.pop()
}
}
nums.sort((a, b) => a - b)
backTracing(0, [])
/*
*/
//3.选择路径-穷举
let dict = ['+', '-', '*', '/']
for (let i = 0; i < ans.length; i++) {
for (let a = 0; a < 4; a++) {
for (let b = 0; b < 4; b++) {
for (let c = 0; c < 4; c++) {
//(1-2)-3-4
let sum1 = eval(`(${ans[i][0]}${dict[a]}${ans[i][1]})${dict[b]}${ans[i][2]}${dict[c]}${ans[i][3]}`)
//1-(2-3)-4
let sum2 = eval(`${ans[i][0]}${dict[a]}(${ans[i][1]}${dict[b]}${ans[i][2]})${dict[c]}${ans[i][3]}`)
//1-2-(3-4)
let sum3 = eval(`${ans[i][0]}${dict[a]}${ans[i][1]}${dict[b]}(${ans[i][2]}${dict[c]}${ans[i][3]})`)
// (1-2-3)-4
let sum4 = eval(`(${ans[i][0]}${dict[a]}${ans[i][1]}${dict[b]}${ans[i][2]})${dict[c]}${ans[i][3]}`)
//1-(2-3-4)
let sum5 = eval(`${ans[i][0]}${dict[a]}(${ans[i][1]}${dict[b]}${ans[i][2]}${dict[c]}${ans[i][3]})`)
//(1-2)-(3-4)
let sum6 = eval(`(${ans[i][0]}${dict[a]}${ans[i][1]})${dict[b]}(${ans[i][2]}${dict[c]}${ans[i][3]})`)
// 1-((2-3)-4)
let sum7 = eval(`${ans[i][0]}${dict[a]}((${ans[i][1]}${dict[b]}${ans[i][2]})${dict[c]}${ans[i][3]})`)
//((1-2)-3)-4
let sum8 = eval(`((${ans[i][0]}${dict[a]}${ans[i][1]})${dict[b]}${ans[i][2]})${dict[c]}${ans[i][3]}`)
// 1-(2-(3-4))
let sum9 = eval(`${ans[i][0]}${dict[a]}(${ans[i][1]}${dict[b]}(${ans[i][2]}${dict[c]}${ans[i][3]}))`)
// 1-((2-3)-4)
let sum10 = eval(`${ans[i][0]}${dict[a]}((${ans[i][1]}${dict[b]}${ans[i][2]})${dict[c]}${ans[i][3]})`)
if ([sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8, sum9, sum10].includes(24)) {
return "YES"
}
}
}
}
}
return "NO"
}

let str = 'A 2 3 6'
let str1 = '3 3 8 8'
console.log(get24(str))
console.log(get24(str1))


本文内容仅供个人学习、研究或参考使用,不构成任何形式的决策建议、专业指导或法律依据。未经授权,禁止任何单位或个人以商业售卖、虚假宣传、侵权传播等非学习研究目的使用本文内容。如需分享或转载,请保留原文来源信息,不得篡改、删减内容或侵犯相关权益。感谢您的理解与支持!

链接: https://fly63.com/article/detial/11254

相关推荐

JavaScript字符串压缩_js实现字符串压缩

设计一种方法,通过给重复字符计数来进行基本的字符串压缩。例如,字符串 aabcccccaaa 可压缩为 a2b1c5a3 。而如果压缩后的字符数不小于原始的字符数,则返回原始的字符串。 可以假设字符串仅包括a-z的字母

js实现将一个正整数分解质因数

js 把一个正整数分解成若干个质数因子的过程称为分解质因数,在计算机方面,我们可以用一个哈希表来存储这个结果。首先,你需要一个判断是否为质数的方法,然后,利用短除法来分解。

js之反转整数算法

将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 ;当尾数为0时候需要进行舍去。解法:转字符串 再转数组进行操作,看到有人用四则运算+遍历反转整数。

js求数组中的最大差值的方法总汇

有一个无序整型数组,如何求出这个数组中最大差值。(例如:无序数组1, 3, 63, 44最大差值是 63-1=62)。实现原理:遍历一次数组,找到最大值和最小值,返回差值

js实现生成任意长度的随机字符串

js生成任意长度的随机字符串,包含:数字,字母,特殊字符。实现原理:可以手动指定字符库及随机字符长度,利用Math.round()和Math.random()两个方法实现获取随机字符

js生成32位uuid算法总汇_js 如何生成uuid?

GUID是一种由算法生成的二进制长度为128位的数字标识符。GUID 的格式为“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”,其中的 x 是 0-9 或 a-f 范围内的一个32位十六进制数。在理想情况下,任何计算机和计算机集群都不会生成两个相同的GUID。

js从数组取出 连续的 数字_实现一维数组中连续数字分成几个连续的数字数组

使用原生js将一维数组中,包含连续的数字分成一个二维数组,这篇文章分2种情况介绍如何实现?1、过滤单个数字;2、包含单个数字。

Tracking.js_ js人脸识别前端代码/算法框架

racking.js 是一个独立的JavaScript库,实现多人同时检测人脸并将区域限定范围内的人脸标识出来,并保存为图片格式,跟踪的数据既可以是颜色,也可以是人,也就是说我们可以通过检测到某特定颜色,或者检测一个人体/脸的出现与移动,来触发JavaScript 事件。

js实现统计一个字符串中出现最多的字母的方法总汇

给出一个字符串,统计出现次数最多的字母。方法一为 String.prototype.charAt:先遍历字符串中所有字母,统计字母以及对应显示的次数,最后是进行比较获取次数最大的字母。方法二 String.prototype.split:逻辑和方法一相同,只不过是通过 split 直接把字符串先拆成数组。

js实现斐波那契数列的几种方式

斐波那契指的是这样一个数列:1、1、2、3、5、8、13、21、34......在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*);随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!