什么是 LFU 算法?

更新日期: 2022-03-28 阅读: 1.9k 标签: 算法

上次的文章介绍了 LRU 算法,今天打算来介绍一下 LFU 算法。在上篇文章中有提到, LFU(Least frequently used:最少使用)算法与 LRU 算法只是在淘汰策略上有所不同,LRU 倾向于保留最近有使用的数据,而 LFU 倾向于保留使用频率较高的数据。

举一个简单的例子:缓存中有 A、B 两个数据,且已达到上限,如果 数据 A 先被访问了 10 次,然后 数据 B 被访问 1 次,当存入新的 数据 C 时,如果当前是 LRU 算法,会将 数据 A 淘汰,而如果是 LFU 算法,则会淘汰 数据 B。

简单来说,就是在 LRU 算法中,不管访问的频率,只要最近访问过,就不会将这个数据淘汰,而在 LFU 算法中,将访问的频率作为权重,只要访问频率越高,该数据就越不会被淘汰,即使该数据很久没有被访问过。

算法实现

我们还是通过一段 JavaScript 代码来实现这个逻辑。

class LFUCache {
    freqs = {} // 用于标记访问频率
    cache = {} // 用于缓存所有数据
    capacity = 0 // 缓存的最大容量
    constructor (capacity) {
    // 存储 LFU 可缓存的最大容量
        this.capacity = capacity
    }
}

与 LRU 算法一样,LFU 算法也需要实现 get 与 put 两个方法,用于获取缓存和设置缓存。

class LFUCache {
  // 获取缓存
    get (key) { }
  // 设置缓存
    put (key, value) { }
}

老规矩,先看设置缓存的部分。如果该缓存的 key 之前存在,需要更新其值。

class LFUCache {
  // cache 作为缓存的存储对象
  // 其解构为: { key: { freq: 0, value: '' } }
  // freq 表示该数据读取的频率;
  // value 表示缓存的数据;
    cache = {}
  // fregs 用于存储缓存数据的频率
  // 其解构为: { 0: [a], 1: [b, c], 2: [d] }
  // 表示 a 还没被读取,b/c 各被读取1次,d被读取2次
  freqs = {}
  // 设置缓存
  put (key, value) {
    // 先判断缓存是否存在
    const cache = this.cache[key]
    if (cache) {
      // 如果存在,则重置缓存的值
      cache.value = value
      // 更新使用频率
      let { freq } = cache
      // 从 freqs 中获取对应 key 的数组
      const keys = this.freqs[freq]
      const index = keys.indexOf(key)
      // 从频率数组中,删除对应的 key
      keys.splice(index, 1)
      if (keys.length === 0) {
        // 如果当前频率已经不存在 key
        // 将 key 删除
        delete this.freqs[freq]
      }
      // 更新频率加 1
      freq = (cache.freq += 1)
      // 更新频率数组
      const freqMap =
            this.freqs[freq] ||
            (this.freqs[freq] = [])
      freqMap.push(key)
      return
    }
  }
}

如果该缓存不存在,要先判断缓存是否超过容量,如果超过,需要淘汰掉使用频率最低的数据。

class LFUCache {
  // 更新频率
  active (key, cache) {
    // 更新使用频率
    let { freq } = cache
    // 从 freqs 中获取对应 key 的数组
    const keys = this.freqs[freq]
    const index = keys.indexOf(key)
    // 从频率数组中,删除对应的 key
    keys.splice(index, 1)
    if (keys.length === 0) {
      // 如果当前频率已经不存在 key
      // 将 key 删除
      delete this.freqs[freq]
    }
    // 更新频率加 1
    freq = (cache.freq += 1)
    // 更新读取频率数组
    const freqMap = this.freqs[freq] || (this.freqs[freq] = [])
    freqMap.push(key)
  }
  // 设置缓存
  put (key, value) {
    // 先判断缓存是否存在
    const cache = this.cache[key]
    if (cache) {
      // 如果存在,则重置缓存的值
      cache.value = value
      this.active(key, cache)
      return
    }
    // 判断缓存是否超过容量
    const list = Object.keys(this.cache)
    if (list.length >= this.capacity) {
      // 超过存储大小,删除访问频率最低的数据
      const [first] = Object.keys(this.freqs)
      const keys = this.freqs[first]
      const latest = keys.shift()
      delete this.cache[latest]
      if (keys.length === 0) delete this.freqs[latest]
    }
    // 写入缓存,默认频率为0,表示还未使用过
    this.cache[key] = { value, freq: 0 }
    // 写入读取频率数组
    const freqMap = this.freqs[0] || (this.freqs[0] = [])
    freqMap.push(key)
  }
}

实现了设置缓存的方法后,再实现获取缓存就很容易了。

class LRUCache {
  // 获取数据
    get (key) {
        if (this.cache[key] !== undefined) {
        // 如果 key 对应的缓存存在,更新其读取频率
      // 之前已经实现过,可以直接复用
            this.active(key)
            return this.cache[key]
        }
        return undefined
  }
}

关于 LFU 缓存算法实现就到这里了,当然该算法一般使用双链表的形式来实现,这里的实现方式,只是为了方便理解其原理,感兴趣的话可以在网上搜索下更加高效的实现方式。

原文:https://segmentfault.com/a/1190000041617815

本文内容仅供个人学习、研究或参考使用,不构成任何形式的决策建议、专业指导或法律依据。未经授权,禁止任何单位或个人以商业售卖、虚假宣传、侵权传播等非学习研究目的使用本文内容。如需分享或转载,请保留原文来源信息,不得篡改、删减内容或侵犯相关权益。感谢您的理解与支持!

链接: https://fly63.com/article/detial/11301

相关推荐

JavaScript字符串压缩_js实现字符串压缩

设计一种方法,通过给重复字符计数来进行基本的字符串压缩。例如,字符串 aabcccccaaa 可压缩为 a2b1c5a3 。而如果压缩后的字符数不小于原始的字符数,则返回原始的字符串。 可以假设字符串仅包括a-z的字母

js实现将一个正整数分解质因数

js 把一个正整数分解成若干个质数因子的过程称为分解质因数,在计算机方面,我们可以用一个哈希表来存储这个结果。首先,你需要一个判断是否为质数的方法,然后,利用短除法来分解。

js之反转整数算法

将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 ;当尾数为0时候需要进行舍去。解法:转字符串 再转数组进行操作,看到有人用四则运算+遍历反转整数。

js求数组中的最大差值的方法总汇

有一个无序整型数组,如何求出这个数组中最大差值。(例如:无序数组1, 3, 63, 44最大差值是 63-1=62)。实现原理:遍历一次数组,找到最大值和最小值,返回差值

js实现生成任意长度的随机字符串

js生成任意长度的随机字符串,包含:数字,字母,特殊字符。实现原理:可以手动指定字符库及随机字符长度,利用Math.round()和Math.random()两个方法实现获取随机字符

js生成32位uuid算法总汇_js 如何生成uuid?

GUID是一种由算法生成的二进制长度为128位的数字标识符。GUID 的格式为“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”,其中的 x 是 0-9 或 a-f 范围内的一个32位十六进制数。在理想情况下,任何计算机和计算机集群都不会生成两个相同的GUID。

js从数组取出 连续的 数字_实现一维数组中连续数字分成几个连续的数字数组

使用原生js将一维数组中,包含连续的数字分成一个二维数组,这篇文章分2种情况介绍如何实现?1、过滤单个数字;2、包含单个数字。

Tracking.js_ js人脸识别前端代码/算法框架

racking.js 是一个独立的JavaScript库,实现多人同时检测人脸并将区域限定范围内的人脸标识出来,并保存为图片格式,跟踪的数据既可以是颜色,也可以是人,也就是说我们可以通过检测到某特定颜色,或者检测一个人体/脸的出现与移动,来触发JavaScript 事件。

js实现统计一个字符串中出现最多的字母的方法总汇

给出一个字符串,统计出现次数最多的字母。方法一为 String.prototype.charAt:先遍历字符串中所有字母,统计字母以及对应显示的次数,最后是进行比较获取次数最大的字母。方法二 String.prototype.split:逻辑和方法一相同,只不过是通过 split 直接把字符串先拆成数组。

js实现斐波那契数列的几种方式

斐波那契指的是这样一个数列:1、1、2、3、5、8、13、21、34......在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*);随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!