js二叉树的遍历算法

更新日期: 2018-11-28 阅读: 4.1k 标签: 算法

二叉树的概念

二叉树是非常重要的数据结构,其中一棵树最上面的点称为根节点,如果一个节点下面连接多个节点,那么该节点称为父节点,下面的节点称为子节点,二叉树的每一个节点最多有2个子节点,一个节点子节点的个数称为度,二叉树每个节点的度只能是0,1,2中的一个,度为0的节点称为叶节点。


js二叉树的实现

用JS实现二叉树数据结构, 完成遍历、查找最大/小值、查找特定值以及删除节点的操作。  

//定义节点
class Node {
    constructor(data){
        this.root = this;
        this.data = data;
        this.left = null;
        this.right = null
    }
}
//创建二叉搜索树(BST))
class BinarySearchTree {
    constructor(){
    this.root = null
    }
    //插入节点
    insert(data){
        const newNode = new Node(data);
        const insertNode = (node,newNode) => {
            if (newNode.data < node.data){
                if(node.left === null){
                    node.left = newNode
                }else {
                    insertNode(node.left,newNode)
                }
            }else {
                if(node.right === null){
                    node.right = newNode
                }else{
                    insertNode(node.right,newNode)
                }

            }
        };
        if(!this.root){
            this.root = newNode
        }else {
            insertNode(this.root,newNode)

        }
    }
    //中序遍历
    inOrder(){
        let backs = [];
        const inOrderNode = (node,callback) => {
            if(node !== null){
                inOrderNode(node.left,callback);
                backs.push(callback(node.data));
                inOrderNode(node.right,callback)
            }
        };
        inOrderNode(this.root,callback);
        function callback(v){
            return v
        }
        return backs
    }
    //前序遍历
    preOrder(){
        let backs = [];
        const preOrderNode = (node,callback) => {
            if(node !== null){
                backs.push(callback(node.data));
                preOrderNode(node.left,callback);
                preOrderNode(node.right,callback)
            }
        };
        preOrderNode(this.root,callback);
        function callback(v){
            return v
        }
        return backs
    }
    //后序遍历
    postOrder(){
        let backs = [];
        const postOrderNode = (node,callback) => {
            if(node !== null){
                postOrderNode(node.left,callback);
                postOrderNode(node.right,callback);
                backs.push(callback(node.data))
            }
        };
        postOrderNode(this.root,callback);
        function callback(v){
            return v
        }
        return backs
    }
    //查找最小值
    getMin(node){
        const minNode = node => {
            return node? (node.left? minNode(node.left):node):null
        };
        return minNode( node || this.root)
    }
    //查找最大值
    getMax(node){
        const minNode = node => {
            return node? (node.right? minNode(node.right):node):null
        };
        return minNode(node || this.root)
    }
    //查找特定值
    find(data){
        const findNode = (node,data) => {
            if(node===null) return false;
            if(node.data===data) return node;
            return findNode((data < node.data)? node.left: node.right,data)
        };
        return findNode(this.root,data)

    }
    //删除节点
    remove(data){
        const removeNode = (node,data) => {
            if(node === null) return null;
            if(node.data === data){
                if(node.left === null && node.right === null) return null;
                if(node.left === null) return node.right;
                if(node.right === null) return node.left;
                if(node.left !==null && node.right !==null){
                let _node = this.getMin(node.right);
                node.data = _node.data;
                node.right = removeNode(node.right,data);
                return node
                }
            } else if(data < node.data){
                node.left=removeNode(node.left,data);
                return node
            } else {
                node.right=removeNode(node.right,data);
                return node
            }
        };
        return removeNode(this.root,data)
    }
}
 //创建BST
const tree = new BinarySearchTree();
tree.insert(11);
tree.insert(7);
tree.insert(5);
tree.insert(3);
tree.insert(9);
tree.insert(8);
tree.insert(10);
tree.insert(13);
tree.insert(12);
tree.insert(14);
tree.insert(20);
tree.insert(18);
tree.insert(25);
console.log(tree);
console.log(tree.root);
//中序遍历BST
console.log(tree.inOrder());
//前序遍历BST
console.log(tree.preOrder());
//后序遍历BST
console.log(tree.postOrder());
//搜索最小值
console.log(tree.getMin());
//搜索最大值
console.log(tree.getMax());
//查找特定值
console.log(tree.find(2));
console.log(tree.find(3));
console.log(tree.find(20));
//删除节点,返回新的二叉树,不改变原来的二叉树
console.log(tree.remove(11));
a=tree.remove(11);
console.log(a.root);
console.log(tree);


本文内容仅供个人学习、研究或参考使用,不构成任何形式的决策建议、专业指导或法律依据。未经授权,禁止任何单位或个人以商业售卖、虚假宣传、侵权传播等非学习研究目的使用本文内容。如需分享或转载,请保留原文来源信息,不得篡改、删减内容或侵犯相关权益。感谢您的理解与支持!

链接: https://fly63.com/article/detial/1440

相关推荐

JavaScript字符串压缩_js实现字符串压缩

设计一种方法,通过给重复字符计数来进行基本的字符串压缩。例如,字符串 aabcccccaaa 可压缩为 a2b1c5a3 。而如果压缩后的字符数不小于原始的字符数,则返回原始的字符串。 可以假设字符串仅包括a-z的字母

js实现将一个正整数分解质因数

js 把一个正整数分解成若干个质数因子的过程称为分解质因数,在计算机方面,我们可以用一个哈希表来存储这个结果。首先,你需要一个判断是否为质数的方法,然后,利用短除法来分解。

js之反转整数算法

将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 ;当尾数为0时候需要进行舍去。解法:转字符串 再转数组进行操作,看到有人用四则运算+遍历反转整数。

js求数组中的最大差值的方法总汇

有一个无序整型数组,如何求出这个数组中最大差值。(例如:无序数组1, 3, 63, 44最大差值是 63-1=62)。实现原理:遍历一次数组,找到最大值和最小值,返回差值

js实现生成任意长度的随机字符串

js生成任意长度的随机字符串,包含:数字,字母,特殊字符。实现原理:可以手动指定字符库及随机字符长度,利用Math.round()和Math.random()两个方法实现获取随机字符

js生成32位uuid算法总汇_js 如何生成uuid?

GUID是一种由算法生成的二进制长度为128位的数字标识符。GUID 的格式为“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”,其中的 x 是 0-9 或 a-f 范围内的一个32位十六进制数。在理想情况下,任何计算机和计算机集群都不会生成两个相同的GUID。

js从数组取出 连续的 数字_实现一维数组中连续数字分成几个连续的数字数组

使用原生js将一维数组中,包含连续的数字分成一个二维数组,这篇文章分2种情况介绍如何实现?1、过滤单个数字;2、包含单个数字。

Tracking.js_ js人脸识别前端代码/算法框架

racking.js 是一个独立的JavaScript库,实现多人同时检测人脸并将区域限定范围内的人脸标识出来,并保存为图片格式,跟踪的数据既可以是颜色,也可以是人,也就是说我们可以通过检测到某特定颜色,或者检测一个人体/脸的出现与移动,来触发JavaScript 事件。

js实现统计一个字符串中出现最多的字母的方法总汇

给出一个字符串,统计出现次数最多的字母。方法一为 String.prototype.charAt:先遍历字符串中所有字母,统计字母以及对应显示的次数,最后是进行比较获取次数最大的字母。方法二 String.prototype.split:逻辑和方法一相同,只不过是通过 split 直接把字符串先拆成数组。

js实现斐波那契数列的几种方式

斐波那契指的是这样一个数列:1、1、2、3、5、8、13、21、34......在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*);随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!