JS算法之深度优先遍历(DFS)和广度优先遍历(BFS)

更新日期: 2019-03-31 阅读: 3.4k 标签: 算法

背景

在开发页面的时候,我们有时候会遇到这种需求:在页面某个dom节点中遍历,找到目标dom节点,我们正常做法是利用选择器document.getElementById(),document.getElementsByName()或者document.getElementsByTagName(),但在本文,我们从算法的角度去查找dom节点,同时理解一下深度优先遍历(DFS)和广度优先遍历(BFS)的原理。


准备

假设页面上的dom结构如下:

<div id="root">
    <ul>
        <li>
            <a href="">
                <img src="" alt="">
            </a>
        </li>
        <li>
            <span></span>
        </li>
        <li>
        </li>
    </ul>
    <p></p>
    <button></button>
</div>

让我们来把这个dom结构转化成树的样子


这样之后,dom结构似乎清楚了不少。


深度优先遍历(Depth-First Search)

该方法是以纵向的维度对dom树进行遍历,从一个dom节点开始,一直遍历其子节点,直到它的所有子节点都被遍历完毕之后在遍历它的兄弟节点。即如图所示(遍历顺序为红字锁标):


js实现该算法代码(递归版本):

function deepFirstSearch(node,nodeList) {  
    if (node) {    
        nodeList.push(node);    
        var children = node.children;    
        for (var i = 0; i < children.length; i++) 
        //每次递归的时候将 需要遍历的节点 和 节点所存储的数组传下去
        deepFirstSearch(children[i],nodeList);    
    }    
    return nodeList;  
} 

非递归版本:

function deepFirstSearch(node) {
    var nodes = [];
    if (node != null) {
        var stack = [];
        stack.push(node);
        while (stack.length != 0) {
        var item = stack.pop();
        nodes.push(item);
        var children = item.children;
        for (var i = children.length - 1; i >= 0; i--)
            stack.push(children[i]);
        }
    }
    return nodes;
}

deepFirstSearch接受两个参数,第一个参数是需要遍历的节点,第二个是节点所存储的数组,并且返回遍历完之后的数组,该数组的元素顺序就是遍历顺序,调用方法:

let root = document.getElementById('root')
deepTraversal(root,nodeList=[])

控制台输出结果


广度优先遍历(breadth-first traverse)

该方法是以横向的维度对dom树进行遍历,从该节点的第一个子节点开始,遍历其所有的兄弟节点,再遍历第一个节点的子节点,完成该遍历之后,暂时不深入,开始遍历其兄弟节点的子节点。即如图所示(遍历顺序为红字锁标):


js实现算法代码(递归版本):

function breadthFirstSearch(node) {
    var nodes = [];
    var i = 0;
    if (!(node == null)) {
        nodes.push(node);
        breadthFirstSearch(node.nextElementSibling);
        node = nodes[i++];
        breadthFirstSearch(node.firstElementChild);
    }
    return nodes;
}

递归版本的BFS由于层级太深,会导致堆栈溢出:Maximum call stack size exceeded,但遍历的顺序依旧没有问题,可以在遍历过程中进行操作,不返回遍历数组即可。
非递归版本:

function breadthFirstSearch(node) {  
    var nodes = [];  
    if (node != null) {  
        var queue = [];  
        queue.unshift(node);  
        while (queue.length != 0) {  
            var item = queue.shift();  
            nodes.push(item);  
            var children = item.children;  
            for (var i = 0; i < children.length; i++)  
                queue.push(children[i]);  
        }  
    }  
    return nodes;  
}

控制台输出结果:


总结

BFS和DFS都是图的算法之一,本文所阐述的版本较为简单,为无向且非连通图,在日后会更新更多基于JavaScript的算法。


本文内容仅供个人学习、研究或参考使用,不构成任何形式的决策建议、专业指导或法律依据。未经授权,禁止任何单位或个人以商业售卖、虚假宣传、侵权传播等非学习研究目的使用本文内容。如需分享或转载,请保留原文来源信息,不得篡改、删减内容或侵犯相关权益。感谢您的理解与支持!

链接: https://fly63.com/article/detial/2622

相关推荐

JavaScript字符串压缩_js实现字符串压缩

设计一种方法,通过给重复字符计数来进行基本的字符串压缩。例如,字符串 aabcccccaaa 可压缩为 a2b1c5a3 。而如果压缩后的字符数不小于原始的字符数,则返回原始的字符串。 可以假设字符串仅包括a-z的字母

js实现将一个正整数分解质因数

js 把一个正整数分解成若干个质数因子的过程称为分解质因数,在计算机方面,我们可以用一个哈希表来存储这个结果。首先,你需要一个判断是否为质数的方法,然后,利用短除法来分解。

js之反转整数算法

将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 ;当尾数为0时候需要进行舍去。解法:转字符串 再转数组进行操作,看到有人用四则运算+遍历反转整数。

js求数组中的最大差值的方法总汇

有一个无序整型数组,如何求出这个数组中最大差值。(例如:无序数组1, 3, 63, 44最大差值是 63-1=62)。实现原理:遍历一次数组,找到最大值和最小值,返回差值

js实现生成任意长度的随机字符串

js生成任意长度的随机字符串,包含:数字,字母,特殊字符。实现原理:可以手动指定字符库及随机字符长度,利用Math.round()和Math.random()两个方法实现获取随机字符

js生成32位uuid算法总汇_js 如何生成uuid?

GUID是一种由算法生成的二进制长度为128位的数字标识符。GUID 的格式为“xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”,其中的 x 是 0-9 或 a-f 范围内的一个32位十六进制数。在理想情况下,任何计算机和计算机集群都不会生成两个相同的GUID。

js从数组取出 连续的 数字_实现一维数组中连续数字分成几个连续的数字数组

使用原生js将一维数组中,包含连续的数字分成一个二维数组,这篇文章分2种情况介绍如何实现?1、过滤单个数字;2、包含单个数字。

Tracking.js_ js人脸识别前端代码/算法框架

racking.js 是一个独立的JavaScript库,实现多人同时检测人脸并将区域限定范围内的人脸标识出来,并保存为图片格式,跟踪的数据既可以是颜色,也可以是人,也就是说我们可以通过检测到某特定颜色,或者检测一个人体/脸的出现与移动,来触发JavaScript 事件。

js实现统计一个字符串中出现最多的字母的方法总汇

给出一个字符串,统计出现次数最多的字母。方法一为 String.prototype.charAt:先遍历字符串中所有字母,统计字母以及对应显示的次数,最后是进行比较获取次数最大的字母。方法二 String.prototype.split:逻辑和方法一相同,只不过是通过 split 直接把字符串先拆成数组。

js实现斐波那契数列的几种方式

斐波那契指的是这样一个数列:1、1、2、3、5、8、13、21、34......在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*);随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!