React源码解析之ExpirationTime
一、ExpirationTime的作用
在react中,为防止某个update因为优先级的原因一直被打断而未能执行。React会设置一个ExpirationTime,当时间到了ExpirationTime的时候,如果某个update还未执行的话,React将会强制执行该update,这就是ExpirationTime的作用。
二、位置
在React源码解析之Reactdom.render()中,已经讲解了updateContainer():
export function updateContainer(
element: ReactNodeList,
container: OpaqueRoot,
parentComponent: ?React$Component<any, any>,
callback: ?Function,
): ExpirationTime {
...
//计算过期时间,这是React优先级更新非常重要的点
const expirationTime = computeExpirationForFiber(
currentTime,
current,
suspenseConfig,
);
...
}computeExpirationForFiber:
//为fiber对象计算expirationTime
export function computeExpirationForFiber(
currentTime: ExpirationTime,
fiber: Fiber,
suspenseConfig: null | SuspenseConfig,
): ExpirationTime {
...
// Compute an expiration time based on the Scheduler priority.
switch (priorityLevel) {
case ImmediatePriority:
expirationTime = Sync;
break;
case UserBlockingPriority:
// TODO: Rename this to computeUserBlockingExpiration
//一个是计算交互事件(如点击)的过期时间
expirationTime = computeInteractiveExpiration(currentTime);
break;
case NormalPriority:
case LowPriority: // TODO: Handle LowPriority
// TODO: Rename this to... something better.
//一个是计算异步更新的过期时间
expirationTime = computeAsyncExpiration(currentTime);
break;
case IdlePriority:
expirationTime = Never;
break;
default:
invariant(false, 'Expected a valid priority level');
}
...
}我们可以看到有两个计算expirationTime的方法,分别为computeInteractiveExpiration()和computeAsyncExpiration() 先看下computeAsyncExpiration()
三、computeAsyncExpiration()
作用:
返回低优先级(普通异步更新)的expirationTime(过期时间)
源码:
//低权限的过期时间
export const LOW_PRIORITY_EXPIRATION = 5000;
export const LOW_PRIORITY_BATCH_SIZE = 250;
//普通的异步的expirationTime
export function computeAsyncExpiration(
currentTime: ExpirationTime,
): ExpirationTime {
return computeExpirationBucket(
currentTime,
//5000
LOW_PRIORITY_EXPIRATION,
//250
LOW_PRIORITY_BATCH_SIZE,
);
}解析:
currentTime先按下不表,LOW_PRIORITY_EXPIRATION即5000,LOW_PRIORITY_BATCH_SIZE 即250,注意它的名字LOW_PRIORITY_BATCH_SIZE ,下面会提到
四、computeExpirationBucket()
作用:
计算过期时间
源码:
//1073741823
export const Sync = MAX_SIGNED_31_BIT_INT;
//1073741822
export const Batched = Sync - 1;
const UNIT_SIZE = 10;
//1073741821
const MAGIC_NUMBER_OFFSET = Batched - 1;
function ceiling(num: number, precision: number): number {
return (((num / precision) | 0) + 1) * precision;
}
//计算过期时间
function computeExpirationBucket(
currentTime,
expirationInMs,
bucketSizeMs,
): ExpirationTime {
return (
//1073741821
MAGIC_NUMBER_OFFSET -
ceiling(
// 1073741821-currentTime+(high 150 或者 low 5000 /10) ,
MAGIC_NUMBER_OFFSET - currentTime + expirationInMs / UNIT_SIZE,
//(high 100 或者 low 250 /10 )
bucketSizeMs / UNIT_SIZE,
)
);
}解析:
(1)MAX_SIGNED_31_BIT_INT
// Max 31 bit integer. The max integer size in V8 for 32-bit systems.
// Math.pow(2, 30) - 1
// 0b111111111111111111111111111111
//整型最大数值,是V8中针对32位系统所设置的最大值
export default 1073741823;(2)| 0的意思是取整
console.log(16/3 |0) //5(3)根据computeExpirationBucket()里面的公式,计算下异步更新的过期时间:
//low 情况
1073741821-ceiling(1073741821-currentTime+500,25)
1073741821-((((1073741821-currentTime+500) / 25) | 0) + 1) * 25
1073741821-((1073741821/25-currentTime/25+20 | 0) + 1) * 25
1073741821-((1073741821/25-currentTime/25+20*25/25 | 0) + 1) * 25
1073741821-((1073741821-currentTime+500)/25 | 0)*25 - 25
1073741796-((1073741821-currentTime+500)/25 | 0)*25
1073741796-((1073742321-currentTime)/25 | 0)*25
//======我们直接取最后四位来探索规律===================
1796-((2321-currentTime)/25 | 0)*25
//假设 currentTime 是 2000
1796-(2321- 2000 /25 | 0)*25 //1796-300
//currentTime是2010
1796-(311/25 | 0)*25 //1796-300
//currentTime是2024
1796-(311/25 | 0)*25 //1796-275
//currentTime是2025
1796-(311/25 | 0)*25 //1796-275可以看到,低优先的过期时间间隔是25ms 同理,高优先级的过期时间间隔是10ms
//high 情况
1073741821-ceiling(1073741821-currentTime+15,10)**也就是说,React低优先级update的expirationTime间隔是25ms, React让两个相近(25ms内)的update得到相同的expirationTime,目的就是让这两个update自动合并成一个Update,从而达到批量更新的目的,就像LOW_PRIORITY_BATCH_SIZE的名字一样,自动合并批量更新。** 想象一下,开发者不停地使用setState()更新ReactApp,如果不把相近的update合并的话,会严重影响性能,就像提到的doubleBuffer一样,React为提高性能,考虑得非常全面!
原文:https://segmentfault.com/a/1190000020248630
本文内容仅供个人学习/研究/参考使用,不构成任何决策建议或专业指导。分享/转载时请标明原文来源,同时请勿将内容用于商业售卖、虚假宣传等非学习用途哦~感谢您的理解与支持!