js中的AST

更新日期: 2019-10-04阅读: 2.6k标签: 

什么是抽象语法树(Abstract Syntax Tree ,AST)?

百度百科是这么解释的:

在计算机科学中,抽象语法树(Abstract Syntax Tree,AST),或简称语法树(Syntax tree),是源代码语法结构的一种抽象表示。它以树状的形式表现编程语言的语法结构,树上的每个节点都表示源代码中的一种结构。

听起来还是很绕,没关系,你可以简单理解为 它就是你所写代码的的树状结构化表现形式

有了这棵树,我们就可以通过操纵这颗树,精准的定位到声明语句、赋值语句、运算语句等等,实现对代码的分析、优化、变更等操作。

AST在日常业务中也许很难涉及到,有可能你还没有听过,但其实很多时候你已经在使用它了,只是没有太多关注而已,现在流行的 webpack,eslint 等很多插件或者包都有涉及~


抽象语法树能做什么?

聊到AST的用途,其应用非常广泛,下面我简单罗列了一些:

  • IDE的错误提示、代码格式化、代码高亮、代码自动补全等
  • JSLint、JSHint对代码错误或风格的检查等
  • webpack、rollup进行代码打包等
  • CoffeeScript、TypeScript、JSX等转化为原生Javascript

其实它的用途,还不止这些,如果说你已经不满足于实现枯燥的业务功能,想写出类似reactvue这样的牛逼框架,或者想自己搞一套类似webpack、rollup这样的前端自动化打包工具,那你就必须弄懂AST。


如何生成AST?

在了解如何生成AST之前,有必要了解一下Parser(常见的Parser有esprima、traceur、acorn、shift等)

JS Parser其实是一个解析器,它是将js源码转化为抽象语法树(AST)的解析器。

整个解析过程主要分为以下两个步骤:

  • 分词:将整个代码字符串分割成最小语法单元数组
  • 语法分析:在分词基础上建立分析语法单元之间的关系

什么是语法单元?

语法单元是被解析语法当中具备实际意义的最小单元,简单的来理解就是自然语言中的词语。

举个例子来说,下面这段话:

“2019年是祖国70周年”

我们可以把这句话拆分成最小单元,即:2019年、是、祖国、70、周年。

这就是我们所说的分词,也是最小单元,因为如果我们把它再拆分出去的话,那就没有什么实际意义了。

Javascript 代码中的语法单元主要包括以下这么几种:

  • 关键字:例如 var、let、const等
  • 标识符:没有被引号括起来的连续字符,可能是一个变量,也可能是 if、else 这些关键字,又或者是 true、false 这些内置常量
  • 运算符: +、-、 *、/ 等
  • 数字:像十六进制,十进制,八进制以及科学表达式等语法
  • 字符串:因为对计算机而言,字符串的内容会参与计算或显示
  • 空格:连续的空格,换行,缩进等
  • 注释:行注释或块注释都是一个不可拆分的最小语法单元
  • 其他:大括号、小括号、分号、冒号等

如果我们以最简单的复制语句为例的话,如下?

var a = 1;

通过分词,我们可以得到如下结果:

[
    {
        "type": "Keyword",
        "value": "var"
    },
    {
        "type": "Identifier",
        "value": "a"
    },
    {
        "type": "Punctuator",
        "value": "="
    },
    {
        "type": "Numeric",
        "value": "1"
    },
    {
        "type": "Punctuator",
        "value": ";"
    }
]


什么是语法分析?

上面我们已经得到了我们分词的结果,需要将词汇进行一个立体的组合,确定词语之间的关系,确定词语最终的表达含义。

简单来说语法分析是对语句和表达式识别,确定之前的关系,这是个递归过程。

上面我们通过语法分析,可以得到如下结果:

{
    "type": "Program",
    "body": [
        {
            "type": "VariableDeclaration",
            "declarations": [
                {
                    "type": "VariableDeclarator",
                    "id": {
                        "type": "Identifier",
                        "name": "a"
                    },
                    "init": {
                        "type": "Literal",
                        "value": 1,
                        "raw": "1"
                    }
                }
            ],
            "kind": "var"
        }
    ],
    "sourceType": "script"
}

这就是 var a = 1 所转换的 AST;

这里推荐一下astexplorer AST的可视化工具,astexplorer,可以直接进行对代码进行AST转换~


AST 到底怎么用?

上面画了很大篇幅聊了聊AST是什么以及它是如何生成的,说到底,还是不知道AST这玩意有啥用,到底怎么使用。。

ok~ 接下来我们来一起见证奇迹。

我相信大部分同学对 babel 这个库不陌生,现在的做前端模块化开发过程中中一定少不了它,因为它可以帮你将 ECMAScript 2015+ 版本的代码转换为向后兼容的 JavaScript 语法,以便能够运行在当前和旧版本的浏览器或其他环境中,你不用为新语法的兼容性考虑~

而实际上呢,babel 中的很多功能都是靠修改 AST 实现的。

首先,我们来看一个简单的例子,我们如何将 es6 中的 箭头函数 转换成 es5 中的 普通函数,即:

const sum=(a,b)=>a+b;

我们如何将上面简单的 sum 箭头函数转换成下面的形式:

const sum = function(a,b){
    return a+b;
}

想想看,有什么思路?

如果说你不了解 AST 的话,这无疑是一个很困难的问题,根本无从下手,如果你了解 AST 的话,这将是一个非常 easy 的例子。

接下来我们看看如何实现?


安装依赖

需要操作 AST 代码,这里,我们需要借助两个库,分别是 @babel/core 和 babel-types。

其中 @babel/core 是 babel 的核心库,用来实现核心转换引擎,babel-types 类型判断,用于生成AST零部件

cd 到一个你喜欢的目录,通过 npm -y init 初始化操作后,通过 npm i @babel/core babel-types -D安装依赖


目标分析

要进行转换之前,我们需要进行分析,首先我们先通过 astexplorer 查看目标代码跟我们现在的代码有什么区别。

源代码的 AST 结构如下:

// 源代码的 AST
{
    "type": "Program",
    "start": 0,
    "end": 21,
    "body": [
        {
            "type": "VariableDeclaration",
            "start": 0,
            "end": 21,
            "declarations": [
                {
                    "type": "VariableDeclarator",
                    "start": 6,
                    "end": 20,
                    "id": {
                        "type": "Identifier",
                        "start": 6,
                        "end": 9,
                        "name": "sum"
                    },
                    "init": {
                        "type": "ArrowFunctionExpression",
                        "start": 10,
                        "end": 20,
                        "id": null,
                        "expression": true,
                        "generator": false,
                        "async": false,
                        "params": [
                            {
                                "type": "Identifier",
                                "start": 11,
                                "end": 12,
                                "name": "a"
                            },
                            {
                                "type": "Identifier",
                                "start": 13,
                                "end": 14,
                                "name": "b"
                            }
                        ],
                        "body": {
                            "type": "BinaryExpression",
                            "start": 17,
                            "end": 20,
                            "left": {
                                "type": "Identifier",
                                "start": 17,
                                "end": 18,
                                "name": "a"
                            },
                            "operator": "+",
                            "right": {
                                "type": "Identifier",
                                "start": 19,
                                "end": 20,
                                "name": "b"
                            }
                        }
                    }
                }
            ],
            "kind": "const"
        }
    ],
    "sourceType": "module"
}

目标代码的 AST 结构如下:

// 目标代码的 `AST`
{
    "type": "Program",
    "start": 0,
    "end": 48,
    "body": [
        {
            "type": "VariableDeclaration",
            "start": 0,
            "end": 48,
            "declarations": [
                {
                    "type": "VariableDeclarator",
                    "start": 6,
                    "end": 47,
                    "id": {
                        "type": "Identifier",
                        "start": 6,
                        "end": 9,
                        "name": "sum"
                    },
                    "init": {
                        "type": "FunctionExpression",
                        "start": 12,
                        "end": 47,
                        "id": null,
                        "expression": false,
                        "generator": false,
                        "async": false,
                        "params": [
                            {
                                "type": "Identifier",
                                "start": 22,
                                "end": 23,
                                "name": "a"
                            },
                            {
                                "type": "Identifier",
                                "start": 25,
                                "end": 26,
                                "name": "b"
                            }
                        ],
                        "body": {
                            "type": "BlockStatement",
                            "start": 28,
                            "end": 47,
                            "body": [
                                {
                                    "type": "ReturnStatement",
                                    "start": 32,
                                    "end": 45,
                                    "argument": {
                                        "type": "BinaryExpression",
                                        "start": 39,
                                        "end": 44,
                                        "left": {
                                            "type": "Identifier",
                                            "start": 39,
                                            "end": 40,
                                            "name": "a"
                                        },
                                        "operator": "+",
                                        "right": {
                                            "type": "Identifier",
                                            "start": 43,
                                            "end": 44,
                                            "name": "b"
                                        }
                                    }
                                }
                            ]
                        }
                    }
                }
            ],
            "kind": "const"
        }
    ],
    "sourceType": "module"
}

其中里面的 start 和 end 我们不用在意,其只是为了标记其所在代码的位置。

我们关心的是 body 里面的内容,通过对比,我们发现主要不同就在于 init 这一段,一个是 ArrowFunctionExpression , 另一个是 FunctionExpression , 我们只需要将 ArrowFunctionExpression 下的内容改造成跟 FunctionExpression 即可。


小试牛刀

我们建一个 arrow.js 的文件,引入上面的两个库,即

//babel 核心库,用来实现核心转换引擎
const babel = require('@babel/core')
//类型判断,生成AST零部件
const types = require('babel-types')

//源代码
const code = `const sum=(a,b)=>a+b;` //目标代码 const sum = function(a,b){ return a + b }

这里我们需要用到 babel 中的 transform 方法,它可以将 js 代码转换成 AST ,过程中可以通过使用 plugins 对 AST 进行改造,最终生成新的 AST 和 js 代码,其整个过程用网上一个比较贴切的图就是:


其主要用法如下:

//transform方法转换code
//babel先将代码转换成ast,然后进行遍历,最后输出code

let result = babel.transform(code,{
    plugins:[
        {
            visitor
        }
    ]
})

其核心在于插件 visitor 的实现。

它是一个插件对象,可以对特定类型的节点进行处理,这里我们需要处理的节点是ArrowFunctionExpression,它常见的配置方式有两种:

一种是单一处理,结构如下,其中 path 代表当前遍历的路径 path.node 代表当前变量的节点

let visitor = {
    ArrowFunctionExpression(path){
    
    }
}

另一种是用于输入和输出双向处理,结构如下,参数 node 表示当前遍历的节点

let visitor = {
     ArrowFunctionExpression : {
        enter(node){
            
        },
        leave(node){
            
        }
    }
}

这里我们只需要处理一次,所以采用第一种方式。

通过分析目标代码的 AST,我们发现,需要一个 FunctionExpression , 这时候我们就需要用到 babel-types ,它的作用就是帮助我们生产这些节点

我们通过其 npm 包的文档查看,构建一个 FunctionExpression 需要的参数如下:


参照 AST 我们可以看到其 id 为 null,params 是原 ArrowFunctionExpression 中的 params,body是一个blockStatement,我们也可以通过查看 babel-types 文档,用 t.blockStatement(body, directives) 来创建,依次类推,照猫画虎,最终得到的结果如下:

    //原 params
    let params = path.node.params;
    //创建一个blockStatement
    let blockStatement = types.blockStatement([
        types.returnStatement(types.binaryExpression(
            '+',
            types.identifier('a'),
            types.identifier('b')
        ))
    ]);
    //创建一个函数
    let func = types.functionExpression(null, params, blockStatement, false, false);

最后通过 path.replaceWith(func); 将其替换即可;

完成代码如下:

//babel 核心库,用来实现核心转换引擎
const babel = require('@babel/core')
//类型判断,生成AST零部件
const types = require('babel-types')

//源代码
const code = `const sum=(a,b)=>a+b;` //目标代码 const sum = function(a,b){ return a + b }

//插件对象,可以对特定类型的节点进行处理
let visitor = {
    //代表处理 ArrowFunctionExpression 节点
    ArrowFunctionExpression(path){
        let params = path.node.params;
        //创建一个blockStatement
        let blockStatement = types.blockStatement([
            types.returnStatement(types.binaryExpression(
                '+',
                types.identifier('a'),
                types.identifier('b')
            ))
        ]);
        //创建一个函数
        let func = types.functionExpression(null, params, blockStatement, false, false);
        //替换
        path.replaceWith(func);
    }
}

//transform方法转换code
//babel先将代码转换成ast,然后进行遍历,最后输出code
let result = babel.transform(code,{
    plugins:[
        {
            visitor
        }
    ]
})

console.log(result.code);

执行代码,打印结果如下:


至此,我们的函数转换完成,达到预期效果。

怎么样,有没有很神奇!!

其实也没那么复杂,主要是要分析其 AST 的结构,只要弄懂我们需要干什么,那么放手去做就是~

pass:细心的同学发现,上面的代码其实可以优化的,因为我们的 returnStatement 其实也是跟源代码的 returnStatement 是一致的,我们只需要拿来复用即可,因此上述的代码还可以改成下面这样:

    let blockStatement = types.blockStatement([
        types.returnStatement(path.node.body)
    ]);


趁热打铁

上面刚刚认识了如何使用 AST 进行代码改造,不妨趁热打铁,再来试试下面这个问题。

如何将 es6 中的 class 改造成 es5 的 function 形式~

源代码

// 源代码
class Person {
  constructor(name) {
      this.name=name;
  }
  sayName() {
      return this.name;
  }
}

目标代码

// 目标代码

function Person(name) {
    this.name = name;
}

Person.prototype.getName = function () {
    return this.name;
};

有了上面的基础,照猫画虎即可,这里我将不在赘述,过程很重要,这里我仅粘贴核心的转换代码,以供参考。

ClassDeclaration (path) {
    let node = path.node; //当前节点
    let id = node.id;   //节点id
    let methods = node.body.body; // 方法数组
    let constructorFunction = null; // 构造方法
    let functions = []; // 目标方法
    
    methods.forEach(method => {
        //如果是构造方法
        if ( method.kind === 'constructor' ) {
            constructorFunction = types.functionDeclaration(id, method.params, method.body, false, false);
            functions.push(constructorFunction)
        } else {
            //普通方法
            let memberExpression = types.memberExpression(types.memberExpression(id, types.identifier('prototype'), false), method.key, false);
            let functionExpression = types.functionExpression(null, method.params, method.body, false, false);
            let assignmentExpression = types.assignmentExpression('=', memberExpression, functionExpression);
            functions.push(types.expressionStatement(assignmentExpression));
        }
    })
    //判断,replaceWithMultiple用于多重替换
    if(functions.length === 1){
        path.replaceWith(functions[0])
    }else{
        path.replaceWithMultiple(functions)
    }
}


总结

日常工作中,我们大多数时候关注的只是 js 代码本身,而没有通过 AST 去重新认识和诠释自己的代码~

本文也只是通过对 AST 的一些介绍,起一个抛砖引玉的作用,让你对它 有一个初步的认识,对它不在感觉那么陌生。


链接: https://fly63.com/article/detial/5827

JavaScript实现二叉排序树

Js二叉树排序实现:1初始化二叉树,2二叉树的遍历,3查找最小值,4查找最大值,5删除节点

js “指针”:数组转树

当变量指向一个对象的时候,实际指向的是存储地址,数组转树的方式:第一次遍历将数组转节点对象,存储到新的对象里,id为键值方便索引,第二次遍历根据索引插入子节点

Js实现二叉搜索树

计算机科学中最常用和讨论最多的数据结构之一是二叉搜索树。这通常是引入的第一个具有非线性插入算法的数据结构。二叉搜索树类似于双链表,每个节点包含一些数据,以及两个指向其他节点的指针;它们在这些节点彼此相关联的方式上有所不同

js 实现 list转换成tree(数组到树)

JS 将有父子关系的平行数组转换成树形数据:方法一:双重遍历,一次遍历parentId,一次遍历id == parendId;该方法应该能很容易被想到,实现起来也一步一步可以摸索出来;

Js算法之自平衡树

节点的高度和平衡因子;节点高度:从节点到任意子节点的彼岸的最大值。这个相对来说容易理解。那么获得节点高度的代码实现如下:平衡因子:每个节点左子树高度和右子树高度的差值。该值为0 、 -1、 1 时则为正常值

vue递归组件:树形控件

在编写树形组件时遇到的问题:组件如何才能递归调用?递归组件点击事件如何传递?组件目录及数据结构;在组件模板内调用自身必须明确定义组件的name属性,并且递归调用时组件名称就是name属性

Js二叉树的遍历

二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

js将扁平结构数据转换为树形结构

最近项目又频繁需要对扁平结构进行树形转换,这个算法从我最早接触的时候使用了递归,到现在的单次循环完成,简单记录一下算法的演变,算是对树形算法的一个简单记录,这种类型的算法在项目中的使用挺多的

快速实现一个简单可复用可扩展的Vue树组件

大概因为平时工作项目的原因,写了很多次树形组件,越写越觉得可以写得更简单并且更具有复用性、扩展性。树组件的应用场景很多,比如一篇文章的目录、一个公司部门组织情况、思维导图等,其实都可以用树形结构来描述

JS树结构操作:查找、遍历、树结构和列表结构相互转换

经常有同学问树结构的相关操作,也写了很多次,在这里总结一下JS树形结构一些操作的实现思路,并给出了简洁易懂的代码实现。本文内容结构大概如下:

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!