扫一扫分享
WeKnora(维娜拉) 是一款基于大语言模型(LLM)的文档理解与语义检索框架,专为结构复杂、内容异构的文档场景而打造。
框架采用模块化架构,融合多模态预处理、语义向量索引、智能召回与大模型生成推理,构建起高效、可控的文档问答流程。核心检索流程基于 RAG(Retrieval-Augmented Generation) 机制,将上下文相关片段与语言模型结合,实现更高质量的语义回答。
WeKnora 采用现代化模块化设计,构建了一条完整的文档理解与检索流水线。系统主要包括文档解析、向量化处理、检索引擎和大模型推理等核心模块,每个组件均可灵活配置与扩展。
应用场景 | 具体应用 | 核心价值 |
---|---|---|
企业知识管理 | 内部文档检索、规章制度问答、操作手册查询 | 提升知识查找效率,降低培训成本 |
科研文献分析 | 论文检索、研究报告分析、学术资料整理 | 加速文献调研,辅助研究决策 |
产品技术支持 | 产品手册问答、技术文档检索、故障排查 | 提升客户服务质量,减少技术支持负担 |
法律合规审查 | 合同条款检索、法规政策查询、案例分析 | 提高合规效率,降低法律风险 |
医疗知识辅助 | 医学文献检索、诊疗指南查询、病例分析 | 辅助临床决策,提升诊疗质量 |
功能模块 | 支持情况 | 说明 |
---|---|---|
文档格式支持 | ✅ PDF / Word / Txt / Markdown / 图片(含 OCR / Caption) | 支持多种结构化与非结构化文档内容解析,支持图文混排与图像文字提取 |
嵌入模型支持 | ✅ 本地模型、BGE / GTE API 等 | 支持自定义 embedding 模型,兼容本地部署与云端向量生成接口 |
向量数据库接入 | ✅ PostgreSQL(pgvector)、Elasticsearch | 支持主流向量索引后端,可灵活切换与扩展,适配不同检索场景 |
检索机制 | ✅ BM25 / Dense Retrieve / GraphRAG | 支持稠密/稀疏召回、知识图谱增强检索等多种策略,可自由组合召回-重排-生成流程 |
大模型集成 | ✅ 支持 Qwen、DeepSeek 等,思考/非思考模式切换 | 可接入本地大模型(如 Ollama 启动)或调用外部 API 服务,支持推理模式灵活配置 |
问答能力 | ✅ 上下文感知、多轮对话、提示词模板 | 支持复杂语义建模、指令控制与链式问答,可配置提示词与上下文窗口 |
端到端测试支持 | ✅ 检索+生成过程可视化与指标评估 | 提供一体化链路测试工具,支持评估召回命中率、回答覆盖度、BLEU / ROUGE 等主流指标 |
部署模式 | ✅ 支持本地部署 / Docker 镜像 | 满足私有化、离线部署与灵活运维的需求 |
用户界面 | ✅ Web UI + RESTful API | 提供交互式界面与标准 API 接口,适配开发者与业务用户使用习惯 |
确保本地已安装以下工具:
# 克隆主仓库
git clone https://github.com/Tencent/WeKnora.git
cd WeKnora
# 复制示例配置文件
cp .env.example .env
# 编辑 .env,填入对应配置信息
# 所有变量说明详见 .env.example 注释
# 启动全部服务(含 Ollama 与后端容器)
./scripts/start_all.sh
# 或
make start-all
# 启动 ollama 服务 (可选)
ollama serve > /dev/null 2>&1 &
# 启动服务
docker compose up -d
./scripts/start_all.sh --stop
# 或
make stop-all
启动成功后,可访问以下地址:
仅供个人学习参考/导航指引使用,具体请以第三方网站说明为准,本站不提供任何专业建议。如果地址失效或描述有误,请联系站长反馈~感谢您的理解与支持!
手机预览