实现简单,便于做加减乘除使用,由于项目临时要用记录下,如需要更加复杂的计算类库,可以考虑 math.js等知名类库
/**
* floatTool 包含加减乘除四个方法,能确保浮点数运算不丢失精度
*
* 我们知道计算机编程语言里浮点数计算会存在精度丢失问题(或称舍入误差),其根本原因是二进制和实现位数限制有些数无法有限表示
* 以下是十进制小数对应的二进制表示
* 0.1 >> 0.0001 1001 1001 1001…(1001无限循环)
* 0.2 >> 0.0011 0011 0011 0011…(0011无限循环)
* 计算机里每种数据类型的存储是一个有限宽度,比如 JavaScript 使用 64 位存储数字类型,因此超出的会舍去。舍去的部分就是精度丢失的部分。
*
* ** method **
* add / subtract / multiply /divide
*
* ** explame **
* 0.1 + 0.2 == 0.30000000000000004 (多了 0.00000000000004)
* 0.2 + 0.4 == 0.6000000000000001 (多了 0.0000000000001)
* 19.9 * 100 == 1989.9999999999998 (少了 0.0000000000002)
*
* floatObj.add(0.1, 0.2) >> 0.3
* floatObj.multiply(19.9, 100) >> 1990
*
*/
var floatTool = function() {
/*
* 判断obj是否为一个整数
*/
function isInteger(obj) {
return Math.floor(obj) === obj
}
/*
* 将一个浮点数转成整数,返回整数和倍数。如 3.14 >> 314,倍数是 100
* @param floatNum {number} 小数
* @return {object}
* {times:100, num: 314}
*/
function toInteger(floatNum) {
var ret = {times: 1, num: 0}
if (isInteger(floatNum)) {
ret.num = floatNum
return ret
}
var strfi = floatNum + ''
var dotPos = strfi.indexOf('.')
var len = strfi.substr(dotPos+1).length
var times = Math.pow(10, len)
var intNum = parseInt(floatNum * times + 0.5, 10)
ret.times = times
ret.num = intNum
return ret
}
/*
* 核心方法,实现加减乘除运算,确保不丢失精度
* 思路:把小数放大为整数(乘),进行算术运算,再缩小为小数(除)
*
* @param a {number} 运算数1
* @param b {number} 运算数2
* @param digits {number} 精度,保留的小数点数,比如 2, 即保留为两位小数
* @param op {string} 运算类型,有加减乘除(add/subtract/multiply/divide)
*
*/
function operation(a, b, op) {
var o1 = toInteger(a)
var o2 = toInteger(b)
var n1 = o1.num
var n2 = o2.num
var t1 = o1.times
var t2 = o2.times
var max = t1 > t2 ? t1 : t2
var result = null
switch (op) {
case 'add':
if (t1 === t2) { // 两个小数位数相同
result = n1 + n2
} else if (t1 > t2) { // o1 小数位 大于 o2
result = n1 + n2 * (t1 / t2)
} else { // o1 小数位 小于 o2
result = n1 * (t2 / t1) + n2
}
return result / max
case 'subtract':
if (t1 === t2) {
result = n1 - n2
} else if (t1 > t2) {
result = n1 - n2 * (t1 / t2)
} else {
result = n1 * (t2 / t1) - n2
}
return result / max
case 'multiply':
result = (n1 * n2) / (t1 * t2)
return result
case 'divide':
return result = function() {
var r1 = n1 / n2
var r2 = t2 / t1
return operation(r1, r2, 'multiply')
}()
}
}
// 加减乘除的四个接口
function add(a, b) {
return operation(a, b, 'add')
}
function subtract(a, b) {
return operation(a, b, 'subtract')
}
function multiply(a, b) {
return operation(a, b, 'multiply')
}
function divide(a, b) {
return operation(a, b, 'divide')
}
// exports
return {
add: add,
subtract: subtract,
multiply: multiply,
divide: divide
}
}();
使用方法:
floatTool.add(a,b);//相加
floatTool.subtract(a,b);//相减
floatTool.multiply(a,b);//相乘
floatTool.divide(a,b);//相除
理解javascript中浮点数计算不精准的原因,如何解决浮点数的四则运算(加减乘除)。js中除了toFixed方法以外的实现方法总汇
项目中用到浮点数,Int 等 js中 Number类型比较多, 加上牵涉到财务软件, 前台js运算等。 有时候会出现精确度的问题 , 公共方法中有好事者写的方法。 此处拿来借鉴。
JavaScript能表示并进行精确算术运算的整数范围为:正负2的53次方,也即从最小值-9007199254740992到最大值+9007199254740992之间的范围;对于超过这个范围的整数,JavaScript依旧可以进行运算,但却不保证运算结果的精度。
今天在看基础js文章的时候发现了一个浮点数的精度问题,当打印小数相加的时候有时候会出现数值不准确的情况,如果是在做一些需要数据精度要求较高的工作的时候稍有不慎就会出现问题
JS能够正确表示的整数,JS里面尽管能够正确表示的数值量在2^53,但是位运算能够正常运算的范围却依然是32位,第一位为符号位,所以是2^31,转成10位的边界值是(2147483648)。
在 JavaScript 中整数和浮点数都属于number 数据类型,所有数字都是使用64位浮点数形式储存,遵循IEEE-754双精度标准存储,即便整数也是如此。 所以我们在打印 1.00 这样的浮点数的结果是 1 而非 1.00。
内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!